

Working on the command line

This sheet will quickly go through a few demonstrations of how to work with a command-line interface. These

instructions can be done from a qinteract session.

1. Moving between directories

The first command is the cd command, which stands for “change directory.” Typing:

cd

will change your directory to your “home” directory. This directory belongs to you, and is the Linux equivalent
of your c:\Users\ directory on Windows.

cd experiments

will change directories into the experiments folder. The names of directories and files are case-sensitive.

At any time, you can type pwd (print working directory) to see the full path of the directory you are located in.
On Linux, paths are separated by forward-slashes. The top-level directory is simply “/”

There are a few shortcuts that can be used with directories-- ~ is an abbreviation for your home directory,
so you could type:

cd ~ same thing as cd

cd ~/experiments goes to the experiments folder in your home directory

to go to your home or experiments folder. You can also use “..” to indicate the directory above the one you are
in. Let’s go back to our home folder and type:

ls

This will give a listing of the contents of a directory. Try the command again with the “-l” flag:

ls –l
ls –l ~/.. lists the contents of the directory above your home directory

You can make a directory with the mkdir command, and remove one (if it is empty) with rmdir. Two other

useful commands are cp and rm for copying and deleting files or directories.

cp src dst (won’t work right now--we have no files to copy yet)

will copy the file src to dst. If dst is a folder, the copied file will be in that folder with the same name. If dst
does not exist, then dst will be used as the name of the copied file.

Each of the commands that we have used so far is actually a separate program, and furthermore, as a program,

each one is a file located somewhere in the filesystem. You can use the which command to see where a
program is located:

which ls

shows us (on linux) that the “ls” program is located in /usr/bin directory. You can use this to explore some of
the different programs that are available:

which fsl
cd /usr/local/packages/fsl-4.1.8/bin
ls

will give you a complete listing of all of the fsl command line programs. Try the same thing to find some of the

Biac programs, like bxhabsorb.

You can find documentation for almost any command on a Linux system with the man command:

man ls
man fsl

If “man” doesn’t give any documentation, sometimes you can find simple usage notes by typing just the
program name without arguments:

bxhabsorb

2. File shortcuts

On the cluster, we found fsl in the /usr/local/packages/fsl-4.1.8/bin folder.

If you type in:

cd /u[Tab]lo[Tab]p[Tab]fsl-4.1.8/b[Tab]

You can greatly speed up typing long paths. The [Tab] trick can autocomplete your paths by matching what
you have already typed against directories that exist.

Another feature that works in a somewhat similar way is pattern matching. You can use * to stand in for any
string. So:

ls /usr/bin/* lists the many programs that are in /usr/bin

ls /usr/bin/c* will list only those programs beginning with the letter c

ls /usr/bin/m*r will list programs beginning with c and ending with r

Just like the [Tab] trick, the * will only match against files and folders that exist.

3. Piping and i/o redirection

Many command line programs print out information to the terminal, like ls does. They may also take input, like
the rm command does, if it asks you for y/n confirmation for deleting a file. You can capture output to a file if
you like.

cd
ls /usr/bin > file_list.txt

First, we went to your home directory. Notice that the next line did not print anything to the screen. If you

look in the current directory, you will see a new file called file_list.txt that has just been created. The output
from the ls command that is normally printed to the screen was instead redirected into this file with the redirect

>. If it helps you to remember it this way, the > looks like a funnel collecting the output of ls /usr/bin and

funneling it into the file_list.txt file.

We can view the contents of the file with the more command. Or we can use the much simpler cat command
to dump the contents of the file onto the screen. Notice that if you cat file_list.txt the file is dumped faster than
you can read it.

Another useful command is the grep command, which lets you search a file for a pattern.

grep –n cd file_list.txt

Will search for lines containing “cd” inside the file file_list.txt and number them.

So, what we have done with the last couple of commands is to use ls to print a listing of files, redirected it into a
text file, then searched that text file for a pattern. There is a shorter way to accomplish that using the “|”
command. This is called a “pipe.” It allows the output from one program to be redirected as input into another
program. Try

ls /usr/bin | grep cd

Or try first:

ps –eF which should give a list of every program running on the node, and then

ps –eF | grep yourlogin to see only your own programs.

The output from the first command was printed to the screen as a table of all running programs. For the

second command, the table was generated, then sent to the grep program, which searched it, and only printed

the lines that contain yourlogin. This may seem pretty complicated, but a large part of the power that comes
from using the Linux command line is the ability to string different programs together to accomplish more
complicated tasks. Many of the Linux commands are designed to be used this way—to print output in a way
that it can be used by other programs, or to be able to take in and process the output of another program.

Only one program at a time has the ability to print to the terminal, or take input from the keyboard. This is why

we use the & when we run gedit. Running without the &, gedit will receive keyboard input from the terminal,
and can print output to the terminal. But, it doesn’t need either of these things—it is a graphical program.

Running gedit & forces the program to relinquish its control of the terminal.

4. Setting environment variables

One of the final things to cover on the command line is the setting of environment variables. These are
variables that you can set and retrieve, just like you can with any other programming language. But they are also
inherited by any other program that you run on the command line. They can be used to configure or change
the way that programs run. There are already quite a few environment variables set on your behalf, and you can
see them by typing

printenv

You can see that many of these contain configuration information for FSL—like telling FSL where it is
installed.

To make a variable, you can just type something like the following:

MYVAR=”hello”

Notice that there are no spaces, and the value of the variable is in quotes. Variables are usually written in all

caps as a convention. We can use the variable by prefixing it with a $

ls $FSL_DIR/bin
ls $FSL_DIR/bin > $MYVAR.txt

To check how the variable replacement has worked, you can use the echo command. This simply repeats back
the input, after the substitutions have happened.

echo $FSL_DIR
cd
echo ls $FSL_DIR/bin > $MYVAR.txt

This is very useful for debugging scripts. So far, we have set variables and used them. To set an environment
variable, use the export command.

export MYVAR

This will make the variable visible to other programs. Also, you should now be able to see it when you type

printenv

This is probably quite a lot to take in all at once, and a bit confusing, but hopefully this worksheet can be an in-
hand reference to many of the commands that you might use when putting together a script, or working on the
command line. It covers many of the basics, but also includes a few tips about how to start to explore the

system (using which to find directories with programs, using man to find documentation) that will be helpful
when you want to start doing more than what is covered today.

