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Diffusion-weighted MRI (DW-MRI) has been increasingly used in imaging neuroscience over the last decade.
An early form of this technique, diffusion tensor imaging (DTI) was rapidly implemented by major MRI scan-
ner companies as a scanner selling point. Due to the ease of use of such implementations, and the plausibility
of some of their results, DTI was leapt on by imaging neuroscientists who saw it as a powerful and unique
new tool for exploring the structural connectivity of human brain. However, DTI is a rather approximate tech-
nique, and its results have frequently been given implausible interpretations that have escaped proper
critique and have appeared misleadingly in journals of high reputation. In order to encourage the use of im-
proved DW-MRI methods, which have a better chance of characterizing the actual fiber structure of white
matter, and to warn against the misuse and misinterpretation of DTI, we review the physics of DW-MRI, in-
dicate currently preferred methodology, and explain the limits of interpretation of its results. We conclude
with a list of ‘Do's and Don'ts’ which define good practice in this expanding area of imaging neuroscience.

© 2012 Elsevier Inc. All rights reserved.
Introduction the immediate meaning of the data we get from the technique? The
Diffusion weighted MRI (DW-MRI) (Behrens and Johansen-Berg,
2009; Jones, 2010a; Le Bihan and Breton, 1985; Le Bihan et al., 1986) is
currently the only method capable of mapping the fiber1 architecture
of tissue (e.g., nervous tissue,muscle) in vivo and, as such, it has triggered
tremendous hopes and expectations. As the technique has matured, an
increasing number of software packages have been developed that
allow such data to be analyzed in a push-button manner — sometimes
to such an extent that the end-user need not know anything about the
underlying physics, and yet are still able to derive a p-value which can
be interpreted according to the hypotheses being tested. There are, how-
ever, a substantial number of pitfalls associatedwith thesemethods (see,
e.g., Jones, 2010b, 2010c; Jones and Cercignani, 2010; Le Bihan et al.,
2006), which can lead to biased or, in some cases, completely fallacious
conclusions being drawn. What is not in question, however, is that
DW-MRI carries invaluable in vivo information about tissue microstruc-
ture, but in order to extract this information in themost efficient and un-
biased way, it is important to make the right choices for the acquisition
and analysis of these data, and, even more importantly, for the interpre-
tation of the results.

It is in this context that this article focuses on three issues. The first
of these is: What exactly are we measuring with DW-MRI, i.e., what is
one or several axons.
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second is: What questions are we trying to answer on the basis of
DW-MRI? The link between these two issues is the basis for the
third issue, interpretation. Our main focus is on measurements within
white matter of the live human brain, although many of the issues
discussed here are equally relevant to pre-clinical studies in animal
models, and of tissues other than brain.

The target audience of this article is the typical ‘end user’ who has
access to diffusion-weighted MR sequences, provided by the MR scan-
ner manufacturer, and uses ‘push-button’ software packages to analyze
their data to look for group differences or structure–function correla-
tions. It is our opinion that, without basic insight into the fundamental
principles of the method and, most importantly, its limitations and pit-
falls, misunderstandings, misconceptions and misinterpretation will be
perpetuated. Our aim is to provide this grounding to the aforemen-
tioned target audience.
What does diffusion-weighted MR imaging actually measure?

Diffusion-weighted MRI measures just one thing — the dephasing
of spins of protons in the presence of a spatially-varying magnetic
field (‘gradient’). The mechanism of interest here is the phase change
resulting from components of incoherent displacement of spins along
the axis of the applied field gradient, which changes their Larmor fre-
quency. The longer the protons are allowed to diffuse (the ‘diffusion
time’, Δ) and the higher the mean squared displacement per unit time
er count, and other fallacies: The do's and don'ts of diffusion MRI,
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of the molecules (the ‘apparent diffusivity’), the more the molecules will
distribute over different distances from the origin with different
associated phase shifts. This phase dispersion leads to a loss of signal co-
herence and therefore a reduction in signal amplitude. By comparing
the signal amplitude with and without the diffusion-encoding gradient
applied, the portion of dephasing resulting from incoherent motion dur-
ing the application of the gradient can be isolated. The signal attenuation
depends on: (i) the distribution of displacements during the diffusion
time (Δ) along the axis of the applied gradient; and (ii) the gradient
strength and duration, which determine the sensitivity of the signal
phase towards displacement. Since diffusion time (Δ), gradient duration
(δ), and gradient strength are all known (and usually combined to derive
the ‘b-value’; Le Bihan and Breton, 1985) we have some kind of correlate
for the motion of the diffusing particles along a particular axis.2

As shown by Cory and Garroway (1990) as well as Callaghan et al.
(1991), under the so-called narrow pulse assumption (i.e., δbbΔ), the
probability density that a particle has moved to a certain point within
a given diffusion time (the diffusion propagator) can be described by
the Fourier transform of the signal attenuation. As an important conse-
quence, estimation of the diffusion propagator need not invoke any
modeling assumptions. However, full reconstruction of the diffusion
propagator is not possible, as it would require infinite sampling of the
q-space (space spanned by gradient directions and b-values). Reason-
able approximation of the diffusion propagator in three-dimensions is
possible and requires diffusion-induced dephasing to be measured
along multiple axes and at multiple strengths (b-values) of diffusion-
weighting. Combined with imaging, this allows one to make spatial
maps of quantities derived from the 3D-propagator (Callaghan et al.,
1988; Wedeen et al., 2005). A more general and complete description
of the diffusion-weighted signal, for arbitrary gradient wave-forms
(i.e., whether or not the narrow-pulse approximation is valid), is to
use the cumulant expansion (Stepisnik, 1981; van Kampen, 1974), in
which the logarithm of the diffusion-weighted signal is expanded in
powers of the diffusion-gradient in the vicinity of zero gradient ampli-
tude (Kiselev, 2010; Liu et al., 2003).

In practice, however, due to the aforementioned time constraints on
in vivo imaging of humans, it is not usually possible to acquire sufficient
data to reconstruct a reasonable estimate of the full three-dimensional
propagator, or to estimate all cumulants. Hence, the majority of DW-
MRI studies tend to use a single diffusionweightingwhenmeasuring sig-
nal attenuation along different axes. Since each encoding vector has
equal magnitude, the ‘tips’ of the encoding vector lie on the surface of a
sphere— and so such approaches are referred to as ‘single shell’ acquisi-
tions. As such, single-shell acquisitions yieldmuchmore limited informa-
tion on the dispersion of the diffusion distances, within the experimental
diffusion time, along the axis of the applied encoding gradient.

So, what is the signal attenuation sensitive to? First, it reflects the
general mobility of water molecules, depending on temperature, vis-
cosity, presence of large molecules, and many other factors. More in-
terestingly, it also depends on barriers and obstacles imposed by
microstructure, e.g., cell membranes, myelin sheaths and microtubules
(Beaulieu, 2002). Such barriers slow down the diffusing particles (‘hin-
dered diffusion’) or even impose an upper limit on their overall
mean-square displacement (‘restricted diffusion’).3 Exactly how this
2 At this stage, we feel it is important to stress that if there is any component of dis-
placement along the applied gradient axis, then this will lead to signal attenuation. In
other words, if the gradient is applied along axis r, water molecules do not have to be
moving parallel to r to cause signal loss. This is a point that appears to be often misun-
derstood in the literature. Only when the displacement is perfectly perpendicular to
the encoding axis will there be no contribution to signal loss — since it is only at this
orientation that there is no component of displacement along the encoding axis.

3 This distinction between restriction and hindrance is important when interpreting
diffusion MR signals. There is a tendency for the term ‘restricted’ to be used in the con-
text of diffusion tensor imaging — but, while the tensor parameters are influenced by
both restricted and hindered diffusion, the tensor model assumes Gaussianity and
therefore translates restricted into hindered diffusion.
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restriction and hindrance influence the signal is an open and compli-
cated question and, as such, one is forced to invoke a number of model-
ing assumptions—whichmay ormay not be correct. The only thing that
we can say with absolute certainty is that DW-MRI measurements
reflect the amount of hindrance/restriction experienced by water mol-
ecules moving with a component of displacement along the axis of
the applied gradient, averaged over the voxel. Unfortunately, this is
about it— anythingmore has to involvemodeling, whichmeans extrap-
olating beyond the data. Mapping DW-MRI data further onto specific
microstructural traits is a difficult inverse problemwith non-unique so-
lutions, each of which requires strong modeling assumptions. Practical
limitations such as the finite voxel size, the finite angular sampling of
the diffusion space and, in many cases, the data acquisition limited to
a single shell, mean that the information DW-MRI contains about mi-
crostructure is far from complete.

What questions do we ask of the DW-MRI data?

There are, of course, myriad questions that are asked of DW-MRI
data — but these can be grouped into classes.

One important class is concerned with the trajectory of fiber path-
ways and their interpretation in terms of anatomical connectivity,
and includes questions of the form: “Which gray matter regions are
inter-connected by white matter fibers?”; “Where do these fibers
pass?”; and “How strong are these connections?”4 Usually, the re-
searcher aims to answer such questions by reconstructing continuous
longer-range trajectories from local, discrete estimates of fiber orien-
tation. This technique is commonly referred to as tractography (Mori
and van Zijl, 2002; Mori et al., 1999; Tournier et al., 2011).

Formally, the fundamental assumption underpinning tractography
is that the tangent to the space curve traced by the fiber tract is always
and everywhere parallel with the local peak in the orientation density
function (ODF) estimated from the data. Moreover, as the local ODF is
discretely sampled on the voxel grid, the reconstruction of continuous
trajectories from these discrete estimates requires interpolation of the
data. Whether a space curve should be propagated as part of the same
trajectory at each stage in the iteration process usually involves a
rule-based decision involving additional assumptions, for example, on
fiber stiffness or maximum curvature. For example, one may set an
upper limit on the maximum angle that the trajectory might turn
through based on these assumptions (although these thresholds are
rarely, if ever, justified in the literature when they are used).

Estimates of fiber orientation are obtained either through the diffu-
sion orientation density function (dODF) or the fiber orientation density
function (fODF). The diffusion ODF is a spherical function that, for any
point on the sphere, represents the relative number of particles that
have diffused along the axis joining that point to the origin. Naturally,
this is a symmetric function, since the probability of displacing a mean
square distance along axis r is identical to that of displacing the same
distance along −r. With axonal fibers all perfectly aligned along the
same axis (i.e., ‘co-axial’) the dODF will be peaked along the long axis
of the fibers — and therefore can be used to infer the orientation of the
fibers. However, it is important to note that the dODF will be non-zero
in all other directions. This is due to the fact that particles can also diffuse
perpendicular to the fiber direction (albeit with less ease). Moreover,
even if there was no diffusion perpendicular to the fiber, reconstruction
from the sampled data would cause the estimated dODF to be blurred
(see ‘Modeling of orientation’ section below). Reconstructing the diffu-
sion ODF is the aim of approaches such as diffusion spectrum imaging
(Wedeen et al., 2005) and q-ball imaging (Tuch, 2004).

In contrast to the dODF, the fODF is a function that represents the
relative number of fibers that are oriented along a given axis. In the
case of all fibers being parallel to the x-axis, for example, the true
4 For a discussion of ‘strength’ of connection and what this might mean, the reader is
referred to Jones 2010.
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fODF will be a delta function pointing along the x-axis, and zero in all
other orientations. Estimated fODFs will of course feature some
amount of blurring (see above). Reconstructing the fODF is the aim
of approaches such as spherical deconvolution (Alexander, 2005a;
Dell'Acqua et al., 2010; Kaden et al., 2007; Patel et al., 2010;
Tournier et al., 2004, 2007).

Many tract-reconstruction algorithms exploit peaks in the dODF
or fODF to propagate white matter trajectories. Details of different ap-
proaches to reconstructing the dODF and fODF will be provided in the
section ‘Modeling of orientation’, below.

A second class of questions asked of DW-MRI concerns the micro-
structural properties of tissues. Here, questions are asked like: “Where
in the brain do we see differences in the local tissue properties between
subject or groups of subjects?”, “How does disease X or disorder Y affect
white matter?”, “Does tissue microstructure correlate with task perfor-
mance?” This type of questions is typically approached bymapping quan-
tities that are derived from local (voxel-wise) models of diffusion. In
contrast to the tractography approach,fiber orientation here is not always
the most important parameter. Instead, parameters reflecting the total
amount of diffusion (apparent diffusion coefficient, ADC) or the diffusion
anisotropy (fractional anisotropy, FA) are used (Basser, 1995). Thesemea-
sures are quite sensitive to a number of tissue properties, such as axonal
ordering, axonal density, degree of myelination, etc., without being very
specific to any one of them. The resulting difficulties in interpretation,
along with possible more sophisticated alternatives, are discussed below
in the section ‘Comparison of microstructural properties’.

We now provide a more detailed appraisal of current approaches
to answering these classes of questions.

Reconstruction of local fiber directions

Acquisition: maximum b-factor?
In order to reconstruct longer-range trajectories of white matter

fibers, local estimates of fiber orientation derived from the signal
are assumed to reflect accurately the true fiber orientation (i.e., be
perfectly tangential to the fiber trajectory) as a function of position.
This is a very strong assumption that requires several conditions to
be met:

(a) The diffusion time is sufficiently long that water molecules in
different compartments of the white matter hit the relevant
boundaries;

(b) The diffusion weighting is sufficiently strong (in terms of dura-
tion, temporal separation and amplitude of the gradients), that
the size of diffusion-induced signal change is detectable above
noise-induced signal variations;

(c) The sampling of the diffusion signal in time and space is suffi-
ciently dense to reconstruct the ODF; and

(d) The voxel size is on the order of the spatial extent of the
smallest collinear fiber bundles.

With regard to condition (a), the observation of non-
monoexponential signal decay has led to the suggestion that diffusing
water molecules in nervous tissue fall into at least two distinct
populations, having different diffusion coefficients (typically labeled
as ‘fast’ and ‘slow’) (Clark and Le Bihan, 2000; Clark et al., 2002; Inglis
et al., 2001; Maier and Mulkern, 2008; Maier et al., 2004; Mulkern
et al., 2001; Ronen et al., 2003). The most common assumption is
that the slow component stems from the intra-axonal water where
diffusion is restricted (the mean-square displacement becomes inde-
pendent of the diffusion time as the diffusion time increases) perpen-
dicular to the long axis of the axon and therefore shows a high degree
of orientation dependency. The faster component originates from the
extra-axonal space where diffusion is just hindered (the mean-square
displacement, although lower than in free water, increases linearly
with the diffusion time according to the Einstein equation), and is less
orientation dependent (Cohen and Assaf, 2002). Diffusion sensitization
Please cite this article as: Jones, D.K., et al., White matter integrity, fib
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at low b-values (e.g., bb1000 s mm−2), leads to almost no signal loss
due to thedisplacement of intra-axonalwater perpendicular to the axon.

However, this interpretation of non-monoexponential decay of
the diffusion signal is not undisputed. In particular, the experimen-
tally obtained slow and fast diffusion fraction does not agree with
extra- and intra-axonal volume fractions as obtained from histology
(Grinberg et al., 2011). Different alternative models have been
suggested (Kärger et al., 1988; Le Bihan, 2007), but so far none of
them has gained general acceptance.

Strong gradients and long diffusion times, resulting in high b-values,
lead to complete dephasing and signal loss for the faster moving
extra-axonal water (irrespective of the orientation of the applied gradi-
ent) and to highly anisotropic signal loss for the intra-axonal compart-
ment (only large components of displacement along the fiber axis will
cause the signal to dephase). Hence, higher b-values make the angular
diffusion profile sharper and more sensitive to the orientation of fibers.
This has been confirmed in simulations (Descoteaux et al., 2009), in
which, for example, increasing the b-value from 1000 s mm−2 to
3000 s mm−2 reduced theminimal resolvable angle between fiber bun-
dles from about 45° to 30°, while a further increase to 5000 s mm−2

offered no further improvement. This finding was independent of the
number of degrees of freedom in the model (number of spherical har-
monics used to represent the fODF) and the number of diffusion-
encoding gradient orientations (81 and 321 orientations were tested).

However, increasing the b-value comes with a price tag: one has to
remember that DW-MRI is a technique based on signal loss. For a fixed
diffusivity, larger b-values mean more signal loss and reduced SNR per
unit time. Under the assumption of unlimited gradient hardware capa-
bility, thiswould justmean lower SNR in the diffusion-weighted images.
However, since gradient power on clinical systems is limited, increasing
the b-value generally means applying the gradients at maximum
amplitude — and increasing their duration or temporal separation.
In turn, this leads to additional signal loss due to relaxation processes
(T1, T2), which will also reduce the SNR in the non-diffusion-weighted
images. Hence, one has tofind a compromise between SNRand sensitiv-
ity of the measurement. So, for resolving peaks in the fiber orientation
density, b-values around 3000 smm−2 are recommended, if the SNR al-
lows. The simulations of Descoteaux et al. (2009) suggest that an SNR in
the diffusion-weighted signal greater than 10 is usually sufficient. The
implications of this requirement will be explored in more detail later.

Acquisition: How many gradient directions?
Condition (b) involves sampling the diffusion propagator in space

and time, that is, for a given orientation, quantifying the relative num-
ber of watermolecules that havemoved a given distance along that ori-
entation within a given time. It is clearly impractical to sample the
angular space with arbitrary precision and therefore, the reconstructed
fiber orientation distribution will be blurred (with, as discussed above,
further blurring imposed by the contributions of the extra-axonal hin-
dered diffusion, especially at lower b-values). This is, of course, not a
problem if the fibers are all oriented along the same axis. However,
since this is not usually the case – at least in large parts of thewhitemat-
ter (Jeurissen et al., in press) – sampling the diffusion-weighted signal
loss along a large number of unique orientations is an important pre-
requisite for accuracy in the reconstruction of fiber orientation distribu-
tion functions. Of course, it would also be a pre-requisite even if, within
each voxel, the fibers are all oriented along the same axis, since this axis
changes orientation from voxel to voxel. Increasing the number of
unique measurements will not only improve the precision (reproduc-
ibility) of these reconstructions, but will also reduce the statistical rota-
tional variance, i.e. the extent to which the variance in an estimate of a
given parameter depends on the orientation of the structure. For exam-
ple, with the diffusion tensor model there are only 6 unknown
parameters — but it has been shown that for a statistically
rotationally-invariant reconstruction (such that the variance in
tensor-derived parameters is independent of the orientation of
er count, and other fallacies: The do's and don'ts of diffusion MRI,
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the tensor) at least 30 directions uniformly distributed over the
sphere are needed (Jones, 2004).

Alternative models to the tensor pose different requirements on
the number of directions. For example, Tournier et al. (2009) have
shown that full characterization of the fODF in white matter using a
spherical harmonic deconvolution approach (Tournier et al., 2004,
2007) requires spherical harmonics up to order 8, which requires esti-
mation of 45 coefficients. However, if we only collect 45measurements
– and perform a straight regression – then wewill fit to the data exactly
and therefore also fit to the noise. [Note, however, that several data
fitting approaches add a regularization step to the fitting procedure
(Descoteaux et al., 2006; Sakaie and Lowe, 2007; Tournier et al.,
2004), aiming to ameliorate the effect of noise, somewhat.] More data
points allow for a regression, which will reduce the effects of noise.
However, the number of unique orientations needed to ensure statisti-
cal rotational invariance is, as yet, unknown. It is therefore likely that far
more than 45 directions are needed to ensure rotational invariance in
the precision of estimates of the peaks in the fODF. Moreover, in the ab-
sence of a priori knowledge of the orientations of the structures of inter-
est, it is important to distribute these sampling vectors such that they
cover the unit sphere as uniformly as possible (White and Dale, 2009).

With hardware currently provided by the major vendors, (gradient
amplitudes between 40 and 80 mT/m), and typical image resolution
(i.e. voxel dimensions on the order of 1.5–2.5 isotropic mm), collecting a
whole brain volume takes on the order of 10–15 s (depending onwheth-
er or not the acquisition is cardiac-gated). Consequently, it is typically
possible to sample the diffusion-weighted signal along 40–60 sampling
orientations in 15–30 min. Thus, the requirement to sample diffusion
along at least 30 unique orientations to obtain robust estimates of
tensor-derived properties (trace, fractional anisotropy and principal
eigenvector orientation; see next section) can be satisfied in a reasonable
scan time. Note that recent development of simultaneous image
refocusing approaches (multiband) (Larkman et al., 2001; Breuer et al.,
2005; Septsompop et al., 2012; Feinberg et al., 2002, 2010) and com-
pressed sensing approaches Donoho et al. 2006; Lustig et al. 2007
(Doneva et al., 2010; Landman et al., 2010; Landman et al., 2012;
Menzel et al., 2011; Michailovich and Rathi, 2010; Michailovich et al.,
2011) have hugepotential for drastically reducing acquisition times,mak-
ing the requirement to collect such numbers of gradient directions a clin-
ical reality.More in-depth treatment of the issue of angular resolution can
be found in, for example, Alexander (2005b), Jones (2010a), and Tournier
et al. (2011).

While discussing ways of optimizing the data acquisition strategy for
robust estimates of tensor-derived properties, we note that while ven-
dors have started to provide multiple-orientation sampling schemes for
diffusion tensor imaging (e.g. 30-direction sampling schemes), the
post-processing software most often employs a simple ordinary linear
least squares (OLLS) regression to a tensormodel,where the signal inten-
sities are log-transformed prior to the model fitting. However, the loga-
rithmic transformation distorts the variances on the diffusion-weighted
signals, and thus the assumption of homoscedasticity which is implicit
in the OLLS approach is invalid. Weighted-linear least squares (WLLS)
approaches apply an appropriate scaling to the variances of the data,
that accounts for the log transformation (Basser et al., 1994a). Non-
linear least squares (NLLS) approaches do not require the logarithmic
transform, and therefore make less assumptions about the uncertainty
on the fitted data. Koay et al. (2006) have shown in simulations that
NLLS outperforms WLLS which in turn outperforms OLLS, in terms of
the mean squared error between estimated FA, and ‘gold truth’ FA, in
noisy data. Despite this, the most widely used regression routine is
OLLS. As laid out above, this is a suboptimal approach to estimating the
tensor and its indices, and WLLS should be used at the least.

The robustness of tensor-derived estimates can be improved even
further through the identification and rejection of outliers in the data.
Chang et al. (2005, 2012) have shown how automated examination of
residuals, in combination with a robust estimator, can allow one to
Please cite this article as: Jones, D.K., et al., White matter integrity, fib
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identify outliers in the data, and reject them. The ‘Robust Estimation
of Tensors by Outlier Rejection’ (RESTORE) algorithm has been
shown to provide even more robust estimates of diffusion parameters
than standard NLLS. Although there is a time penalty in the regression,
it is our opinion that such approaches should be the method of choice
when dealing with ‘real world’ data that are likely to contain outliers.

Acquisition: spatial resolution?
Condition (c) points to the other crucial limitation — the finite

voxel size. When the dimensions of the voxel exceed that of the
dimensions of a fiber population (by population, we refer to a bundle
of axons that follow the same course), or, if the voxel lies at the inter-
face of two bundles with different orientations (partial voluming),
then ambiguity is introduced — both in terms of location of those
populations within the voxel and in terms of their topology.

The signal does not provide any information on the relative posi-
tion of different fiber populations within the voxel. For example, the
diffusion-weighted signals from two bundles of fibers arranged in a
letter ‘T’ configuration, a letter ‘L’ configuration and a ‘+’ sign config-
uration will be identical (see Fig. 1). Although the ‘rotated W’ config-
uration is unlikely to be encountered in the brain, we include it here
as an extreme case to illustrate the point that the reconstructed ODF
contains no information about the spatial position of fibers aligned
along different orientations, and that although the ODF for this con-
figuration would also be a ‘cross’, this does not mean that the under-
lying fiber configuration forms a cross shape. We can only ‘listen’ to
what comes out of the ‘black box’ that is the voxel (see also Kaden
et al., 2007, Fig. 2). It is for this same reason, i.e. that we have no ac-
cess to the actual fiber pathways within each voxel, that it is typically
very difficult to distinguish between ‘kissing’ and ‘crossing’ fiber
configurations.

The resolution constraint is a clear limitation in brain connectivity
studies – where it is not just the major ‘stem’ of the white matter
pathway that is important – but equally crucial is the ability to iden-
tify the insertion points into the cortex. Clearly, however, due to the
aforementioned partial volume effects, determining where and how
the fibers enter the cortex is a difficult problem for diffusion MR
methods, especially for those deployed on a clinical scanner.

Consequently, increasing the spatial resolution as much as possi-
ble is crucial, in order to minimize the number of voxels containing
multiple fiber populations. However, we can perform a simple
thought experiment to get a handle on the resolution that would be
needed to achieve this. Of course, avoiding having an interface be-
tween different fiber populations within all voxels would be impossi-
ble. However, in our thought experiment, we can try to minimize the
total number of voxels in the brain in which an interface is found. To
do this, we have to make the resolution so high that the probability
that each voxel contains just one fiber bundle is high. If coherent
units within the white matter measure, say, 100 μm, then a voxel
size of 1 μm would be needed to make sure that 99% of the voxels
do not contain an interface. Such a resolution is of course unrealistic
(and even more astronomic resolutions would be required for resolv-
ing single axons), not only due to current hardware limitations, but
also because the resulting SNR would be so low that the resulting
data would be completely unreliable. Moreover, the spins that give
rise to the MR signal would diffuse out of the voxel during the time-
scale of the experiment. Currently, the achievable resolution is just
below 1 mm (e.g., Heidemann et al., in press). As a consequence, mul-
tiple fiber populations have to be expected in a substantial portion of
the voxels in any realistic setting.

So, even if the ultimate spatial resolution appears unachievable,
what prevents us from at least pushing the resolution substantially
further in that direction? In general, one has to bear in mind that
the signal-to-noise ratio (SNR) depends linearly on the voxel volume.
For example, reducing the edge length from 2 to 1.5 mm reduces the
SNR bymore than half. While it is tempting to think that this reduction
er count, and other fallacies: The do's and don'ts of diffusion MRI,
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Fig. 1. Schematic demonstration of diffusion MRI's insensitivity to relative position of different fiber populations in the voxel. Four fiber configurations are shown (T, L, + and ro-
tated ‘W’). Despite the fiber populations having entirely different configurations in the different voxels, the fiber orientational density function would be identical.

5D.K. Jones et al. / NeuroImage xxx (2012) xxx–xxx
in SNR can be compensated for by repeating and averaging the mea-
surements, it is important to remember that, unless averaging is
performed in the complex domain [with associated requirements for
careful phase navigation (Anderson and Gore, 1994; Bammer et al.,
1999; Butts et al., 1996, 1997)] and appropriate models of the noise
are invoked (Aja-Fernández et al., 2008; Brion et al., 2011; Clarke et
al., 2008; Dietrich et al., 2008; Koay et al., 2009; Kristoffersen, 2009;
Tristán-Vega et al., 2012; Wiest-Daessle et al., 2008) (as discussed
below), what is important is the SNR in the diffusion-weighted images.
More specifically, the SNR should never be belowabout 3:1 in any of the
diffusion-weighted images — so as to avoid the problems associated
with the rectifiednoise floor (Jones and Basser, 2004) and, as stated ear-
lier, Descoteaux et al. (2009) suggest 10:1 as a safe minimum.

To assess the practical implications imposed by this requirement, we
must consider themaximal signal attenuation that may be encountered
due to diffusion. First, at higher b-values, the signal from the Gaussian
part of the diffusion-weighted signal is completely attenuated — and
therefore we need only consider the signal from the intra-axonal
space. The largest diffusivity is found along the long axis of the fiber —
which is on the order of 1×10−3 mm2 s−1. For a given b-value, the sig-
nal attenuation is given by exp(−b∗D) — and therefore for b=1000,
2000 and 3000 smm−2, the signal attenuation is exp(−1)=0.37,
exp(−2)=.14, and exp(−3)=.05, respectively. Thus — when b=
3000 smm−2 for example, the diffusion-weighted signal is only 5% of
that in the non-diffusion-weighted signal. Therefore, if we adhere to
the recommendations that the SNR in the DW-images never drops
below 10:1, then for b-values of 1000 smm−2, 2000 smm−2 and
3000 smm−2, the non-diffusion-weighted SNR must be (10/0.37)=
27:1, (10/0.14)=71:1, and (10/0.05)=200:1, respectively.

However, obtaining SNRs as high as 200:1 can be challenging. The
SNR that is achievable is a complex function of the maximum gradient
amplitude (since stronger gradients mean that a shorter echo time
can be used for the same amount of diffusion-weighting, and there-
fore T2-related signal losses are reduced), the field strength, and the
design of the receiver coil (proximity to the tissue being imaged,
and the coil loading factor, g-factor for parallel imaging, and the
total number of channels).

As alluded to earlier, strictly speaking this assumes that all images
are single-shot. It is possible to average DW-MRI images to improve
SNR — but this requires averaging in the complex domain which, in
turn, requires complex phase navigation and is not a feature normally
provided by hardware vendors.

When selecting the acquisition parameters, one should strive for
isotropic resolution since different in-plane and between-plane reso-
lutions would lead to differential averaging of fiber orientations, lead-
ing to complicated modeling requirements if this is to be accounted
for. With certain MR scanner manufacturers, spatial-spectral pulses
are employed to suppress the signal from fat while exciting the de-
sired slice. Current designs impose limitations on the minimal achiev-
able slice thickness — which, if isotropic resolution is used, imposes
limitations on the resolution. Ultimately, we recommend selecting
the slice thickness and acquisitionmatrix to ensure that: (a) the resolu-
tion is isotropic; and (b) the signal-to-noise ratio in the non-diffusion
weighted images is at least as large as 3/exp(−b×10−3), where b is
the b-value in mm2 s-1.
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We stress that all of our discussion relating to SNR and our recom-
mendations are aimed at the vast majority of users that take off-
the-shelf software packages which take, as their input, magnitude
reconstructed diffusion-weighted signals and which inherently assume
(albeit often implicitly) that the data have a Gaussian distribution.
However, this is generally only true for when a single receive coil is
used, and the SNR is above about 3:1 (Gudbjartsson and Patz, 1995;
Henkelman, 1985). However, due to the magnitude reconstruction,
the signal reconstructed for a single coil has a Rician distribution
(Gudbjartsson and Patz, 1995; Henkelman, 1985). Moreover, when sig-
nals frommultiple coils are combined (as in parallel imaging, for exam-
ple), then the data have a non-central chi distribution (Brion et al.,
2011; Dietrich et al., 2008). Over the last 3–4 years, great strides have
been made in correcting for the non-Gaussian distribution of the data,
with more appropriate models of the noise. In such situations, one can
‘break the noise floor’ (Koay et al., 2009) and in this case, the strict
requirements to have SNR >3:1 in all images can be relaxed. Currently,
however, such models and processing stops are not widely available,
and so have not been generally adopted. We also stress, that this figure
represents an absolute bare minimum SNR, so as to avoid the noise-
floor. However, a whole host of other considerations will impact on
the minimal SNR required. For example, as the complexity of the
model increases (e.g. the order of the spherical harmonic series is
pushed higher), the SNR of the experiment should increase accordingly.
Here,model parsimony testing can beused to ensure that the SNR of the
experiment supports the complexity of the model that one wishes to
use (e.g. Alexander et al., 2002; Freidlin et al., 2007; Jeurissen et al., in
press). Alternatively, for tractography-based applications, in which
successive estimates of fiber orientation are integrated to form a contin-
uous trajectory, minimizing the variance in estimates of fiber orienta-
tion at each point is clearly important. Here bootstrapping of the data,
using either the repeated samples bootstrap (Jones, 2003; Jones and
Pierpaoli, 2005a; Pajevic and Basser, 2003), residual bootstrap (Chung
et al., 2006; Haroon et al., 2009), or wild bootstrap (Jones, 2008;
Whitcher et al., 2008) would yield invaluable insights into the expected
precision in parameter estimates for a given SNR, allowing the user to
decide whether the SNR is sufficient for their purposes.

In summary, the data provide orientation and location smoothed
maps of the hindrance diffusing particles experienced within a certain
distance. We recommend use of the highest possible resolution — but
with two constraints: (i) the voxel dimensions should be isotropic;
and (ii) unless appropriate models for the noise distribution are includ-
ed in the analysis (Aja-Fernández et al., 2008; Brion et al., 2011; Clarke
et al., 2008; Dietrich et al., 2008; Koay et al., 2009; Kristoffersen, 2009;
Tristán-Vega et al., 2012; Wiest-Daessle et al., 2008) the SNR in the dif-
fusion weighted images should not fall below 3:1. However, this is a
bare minimum and, depending on the model complexity/application,
the SNR may need to be much higher. Current state of the art, with
single-shot methods, dictates an isotropic voxel size on the order of
1.5–2 mm at a static field strength of 3 T.

Currently, with the hardware and software typically provided by
the major vendors, it can be recommended to sample about 60–80
optimally distributed gradient directions, use a b-value of at least
1000 smm−2, better 2000–3000 smm−2, and keep the SNR in all im-
ages safely above 3:1. Parallel imaging (GRAPPA or SENSE) (Griswold
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et al., 1999; Griswold et al., 2002; Pruessmann et al., 1999) is one
established way to reconcile these requirements with an acceptable
acquisition time and should be used whenever possible. Moreover, re-
cent developments such asmultiplexing (Feinberg et al., 2010; Reese et
al., 2009) and compressed sensing Donoho et al., 2006; Lustig et al.,
2007 (Doneva et al., 2010; Landman et al., 2010, 2012; Menzel et al.,
2011;Michailovich and Rathi, 2010;Michailovich et al., 2011), although
not widely available yet, will bring the acquisition times down even
further.

Using ultra-high field imaging (e.g., 7 T) in conjunction with paral-
lel imaging and reduced field of view has been shown to reduce the
isotropic resolution to a little as 800 μm with acceptable orientation
resolution and SNR, revealing fine details of the fiber architecture,
for example at the gray–white matter interface (Heidemann et al.,
in press). Although these techniques are currently far beyond the ca-
pabilities of clinical scanners and the requirements of clinical routine
(e.g., in terms of acquisition time), they demonstrate what is techni-
cally possible in principle and highlight future possibilities.

Finally, while discussing the impact of resolution, the impact of CSF
contamination on diffusion MRI metrics should be discussed. Given
that CSF is isotropic and has a mean diffusivity that is approximately
4 times larger than water in tissue, it is clear that any extent of partial
volume contamination of the voxel by CSF will bias findings. This is
particularly problematic at the interfaces of tissue with CSF-filled
spaces (Concha et al., 2005), and will impact on inferences about
changes in tissue microstructure during development and aging, and
indeed in many pathological processes, where there is a change in tis-
sue volume (Vos et al., 2011). Thus, the acquisition and/or analysis
pipeline should strive to ameliorate the impact of CSF contamination.

CSF-suppression techniques, such as FLAIR, have been used to ame-
liorate CSF-contamination at the point of acquisition (Chou et al., 2005;
Papadakis et al., 2002), but we note that their use can prolong acquisi-
tion time and preclude the possibility of cardiac-gating of the acquisi-
tion, to avoid pulsatility effects (Jones and Pierpaoli, 2005b; Pierpaoli
et al., 2003). There have been various methods proposed for correcting
for CSF-contamination at the post-processing stage, some more robust
than others. We currently recommend the use of a multi-component
modeling solution (Pasternak et al., 2009; Pierpaoli and Jones, 2004),
over other approaches such as covarying for parenchymal volume.
The reader is referred to Metzler-Baddeley et al. (2012) for a discussion
on the relative strengths of different approaches. The bottom line is that
when examining tissue that interfaces with CSF-filled spaces, particu-
larly when there are pathology/aging/developmental processes occur-
ring, accounting for CSF-contamination is an absolute mandate, in
order to draw robust conclusions from the data.

Preprocessing of data
Prior to modeling, it is essential that data are examined for artefacts

and corrected for both motion and eddy-current induced distortions.
Herewe issue aword of cautionwhenusing off-the-shelf software pack-
ages to correct for motion and eddy-currents. Frequently, this is done
using a registration package that performs an affine registration of the
diffusion-weighted images to one of the non-diffusion-weighted images
in the series. While this provides a reasonable correction for motion, it
does tend to neglect the fact that eddy-current induced distortions will
be slice-specific, but again, performing a global affine registration is far
preferable to no correction at all.

However, there are two points that are often overlooked. The first
is that when correcting for subject motion, if there is a rotation of the
image involved in the image registration, then the same rotationmust
be applied to the encoding vectors. Neglecting to perform this impor-
tant step may have minimal impact on scalar indices such as fraction-
al anisotropy, but it can introduce biases of the order of a couple of
degrees to estimates of the principal eigenvector, or peaks in the
fODF or dODF (Leemans and Jones, 2009). When one considers that
reconstructing of a fiber trajectory integrates many estimates of
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fiber orientation, the impact of this bias becomes obvious. Therefore,
especially as the time-penalty for performing this simple processing
step is minimal, we recommend reorientation of the encoding vectors
in all preprocessing pipelines. We stress that not all software pack-
ages used for preprocessing of diffusion MRI data incorporate this
step, and urge the reader to verify what their software package of
choice is doing in this regard.

The second issue arises if there is a residual eddy current along the
phase-encode direction. Such an eddy current will lead to a stretch/
compression of the image along the phase-encode axis in diffusion-
weighted EPI images. The MR signal intensity is proportional to the vol-
ume of the voxel and thus an eddy current of this type will artefactually
reduce/increase the signal intensity. Given that, in keeping with our
opening comments of the sectionWhat does diffusion-weightedMR im-
aging actuallymeasure? all thatwemeasure in diffusionMRI is a change
in signal intensity, this change in signalwould be interpreted as a change
in diffusion if not corrected for. It is a trivial step to modulate the signal
intensity back to its correct value by scaling the intensity in proportion
to the change in the volume of the voxel. Neglecting to do this can
again introduce biases in quantitative metrics and estimates of orienta-
tion (Jones and Cercignani, 2010). However, again we note that not all
software packages commonly used for pre-processing of diffusion-MR
data include this step and, again, we note that the time-penalty for
performing this step is negligible, so is ‘recommended practice’.

We cannot stress enough the importance of eyeballing the raw
image data prior to proceeding on to further analyses. Viewing the
data as a movie loop, cycling through the different diffusion-weighted
volumes, can be an effective way of detecting outliers in the data
(such as slice-drop outs), particularly when viewing data reconstructed
in the two planes orthogonal to the acquisition plane (e.g. if the data are
acquired in the axial plane, slice-drop outs are trivially spotted when
viewing the data in the coronal or sagittal planes). Moreover, given
that head motion in the scanner tends to be gradual and continuous,
the first and last volumes in the series will tend to have the largest
misalignment. It is therefore prudent to alternate between the first
and last volumes in the series to ensure that the motion correction
has been efficient.

Finally, we strongly recommend as a useful tool, to examine the re-
siduals of the fitting procedure as a way of identifying artefacts in the
data. Even if the data are subsequently to be analyzed via non-tensor
methods, examining the residuals to a tensor fit to the data can still be
extremely useful in identifying artefacts in the data such as ghosting,
motion, slice-drop outs, pulsatility and other perturbations (Jones and
Leemans, 2011; Tournier et al., 2011).

Modeling of orientation
There are twoprincipalways tomathematically represent the orienta-

tion dependence of the diffusion-weighted MR signal, as discussed in the
Introduction: To estimate the diffusion ODF or the fiber ODF (see Fig. 2).

Diffusion ODF approaches. The first class of approaches involves trying
to reconstruct the diffusion propagator, i.e., the ensemble-averaged
probability density that a particle has moved a certain distance within
the diffusion time. In principle, and in the limit of time to acquire
data, such approaches seem to confer an advantage over fODF
methods — no uncertain model assumptions have to be used. The ap-
proach is to simply characterize the diffusion itself. However, in order
to make any inferences about the tissue, there is then an implicit
modeling — in that assumptions have to be made about the relation-
ship between the diffusion propagator and the tissue microstructure
properties (e.g., fiber bundle directions or volume fractions) one is
interested in.

In practice, however, exact reconstruction of the full diffusion
propagator is not possible — especially with practical acquisition
schemes, most commonly employing a single b-value. In such cases,
substantial modeling simplifications must be invoked. The most
er count, and other fallacies: The do's and don'ts of diffusion MRI,
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Fig. 2. Reconstruction of diffusion and fiber ODFs on the basis of the analytical Q-ball
(Descoteaux et al., 2009; Tuch, 2004), computed from synthetic data for two parallel
fiber populations crossing at 45°. The colored surface shows the mean fiber orientation
density, averaged over 100 noisy trials, while the transparent surface corresponds to
the mean+2 standard deviations. Blue and red lines indicate the ground truth fiber di-
rections and detected maxima, respectively. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
Modified from Descoteaux et al. (2009).
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common such simplification is the assumption of unimodal aniso-
tropic Gaussian diffusion, leading to the diffusion tensor modeling ap-
proach (Basser et al., 1994a, 1994b). This approach appears to be a
good approximation when the voxel contains only a single co-axial
fiber population and a relatively small b-value is used (thus, in a radi-
al orientation, focusing on extra-axonal water— and the first terms of
the cumulant expansion). However, as pointed out above, due to
practical and SNR-constraints on spatial resolution, many voxels con-
tain multiple fiber populations, bending fibers, and other deviations
from the parallel fiber bundle assumption. This issue (generically re-
ferred to as the ‘crossing fiber problem’) drove the development of al-
ternative techniques to diffusion tensor MR imaging, which aim to
recover more information on the diffusion propagator, and especially
its angular portion — the dODF, than obtained from the tensor-
modeling approach.

Analytical Q-ball imaging, as proposed by Tuch (2004) as well as
Descoteaux et al. (2007), estimates the radial integral of the diffusion
propagator using the Funk–Radon transform and therefore resolves
multi-modal peaks in the dODF that would be missed by the tensor
model. Note, however, that the original formulation of Q-ball imaging
fails to account correctly for the differential volume element in spher-
ical coordinates, so the result is somewhat blurred with respect to the
correct dODF and lacks proper regularization. Tristán-Vega et al.
(2009) as well as Aganj et al. (2010) have presented the correct for-
mulation, also referred to as constant solid angle (CSA) Q-ball imaging.

As an alternative to defining the dODF as the radial integral of the
diffusion propagator, one might assume the angular distribution of
the diffusion propagator to be persistent over all radii, which leads
to the definition of a Persistent Angular Structure (PAS) on the unit
sphere (Jansons and Alexander, 2003). The PAS is determined in
such a way that the resulting diffusion propagator has minimum in-
formation content (maximum entropy) compared to a diffusion prop-
agator with no angular structure at all, under the constraint of the
data. A similar approach has been proposed by Özarslan et al.
(2006) who compute a Diffusion Orientation Transform by express-
ing the inverted Fourier integral by a Raleigh expansion assuming
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mono-exponential radial decay of the signal, and evaluating the inte-
gral at a particular radius.

The second principal approach for describing the dODF comprises
modeling the signal attenuation as coming from distinct sub-
components of the tissue, each of which can be accounted for by a rela-
tively simple model. This leads to the idea of multi-compartment
models. For example, if one assumes that within a voxel there are two
or more relatively coherent fiber populations with different orienta-
tions, onemay extend the simple tensormodel by summing up the con-
tributions of multiple tensors (Liu et al., 2004; Tuch et al., 2002). A
similar approach has been proposed by Behrens et al. (2003) — they
used an isotropic compartment (ball: “round” tensor with all eigen-
values equal) and one or several anisotropic compartments (sticks:
“thin” tensors with only one non-zero eigenvalue). An important ques-
tion in compartmentmodels is that ofmodel complexity, i.e., howmany
compartments (tensors, sticks) one should use to explain the data. This
problem can be tackled usingmodel selection procedures (e.g., Behrens
et al., 2007; Freidlin et al., 2007). Assaf and Basser (Assaf and Basser,
2005; Assaf et al., 2004) proposed a framework combining elements
of diffusion tensor and Q-space imaging, the Composite Hindered and
Restricted Model of Diffusion (CHARMED). The model consists of two
parts, accounting for hindered diffusion in the extracellular space and
within cell bodies (e.g. oligodendroglia) and for restricted diffusion in
the intra-axonal space, respectively. Hindered diffusion is modeled by
a diffusion tensor, while restricted diffusion requires special solutions
for a cylindrical restricted diffusion space. The parameters of the
model, including the respective volume fractions of the compartments
and the principal diffusion directions need to be estimated from mea-
surements at both low and high b-values.
Fiber ODF approaches. In contrast to diffusion propagator and dODF
approaches, which essentially describe the diffusion within a voxel,
fiber ODF techniques aim at estimating relative fiber density over
orientation space. This requires specific model assumptions on the
diffusion or the signal attenuation caused by a single fiber. More spe-
cifically, one tries to infer only the angular distribution of fiber orien-
tations from the angular structure of either the signal (Tournier et al.,
2004, 2007) or of the dODF (Descoteaux et al., 2009) by spherical
deconvolution with a kernel. This kernel is essentially the simplest
model of the diffusion properties of a single fiber that the data sup-
port. The deconvolution kernel is obtained either by assuming that
white matter with the highest anisotropy must contain a single
fiber orientation, or by simulating the response for an idealized fiber.

Clearly, the axon diameter, packing density, membrane perme-
ability and other aspects of the white matter may vary from brain
region to brain region — and thus the ‘single fiber response’ will
only be an approximation that is generalized across the brain. How-
ever, despite this modeling assumption, it appears that fODFs are
superior to dODFs with respect to angular resolution and precision
(see, for example, Descoteaux et al., 2009). This class of techniques
must currently be viewed as sharpening of the angular diffusion pro-
file (Descoteaux et al., 2009) rather than an exact quantification of the
fiber orientation profile. Due to the spatial high-pass filtering proper-
ty of the deconvolution process, these methods are somewhat sensi-
tive to correct regularization, in order to prevent spurious features
in the fODF (Tournier et al., 2007).

Interesting variants include the iterative damped Richardson–Lucy
approach of Dell'Acqua et al. (2010) and the deconvolution of the dif-
fusion ODF rather than the data (Descoteaux et al., 2009). With this
latter method, the dODF (q-ball) and fODF can be compared directly.
While both QBI and spherical harmonic deconvolution according to
Tournier andDescoteaux rely on a rather cumbersomeparameterization
(through the coefficients of spherical harmonics), more convenient
parameterizations (which directly yield interesting values like the
main directions and angular spreads of fiber bundles) are offered by
er count, and other fallacies: The do's and don'ts of diffusion MRI,
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compartment models (e.g., Behrens et al., 2003; Liu et al., 2004) and by
the parametric spherical deconvolution technique (Kaden et al., 2007).

It is important to note that the information encoded in the local
model about the orientational spread or incoherency within a given
fiber population is heavily confounded with uncertainty about the
orientation of the fiber bundle itself. Such uncertainty arises from
multiple sources including: noise (Jones, 2003) and the model regu-
larization it necessitates; incomplete modeling of the different diffu-
sion compartments; and the limited angular and spatial sampling.

In summary, for reconstructing the local fiber orientations with
reasonable accuracy, it is not only important to measure signal atten-
uation along a sufficiently large number of unique orientations, but
also to model the data in a way that preserves this orientation-
dependent information. Thus, in all cases when the voxel contains
more than one fiber population, the diffusion tensor model is inade-
quate for this purpose.

Beforemoving on to describing the reconstruction of fiber pathways,
we do wish to make a point very clear. The majority of deconvolution
procedures were designed primarily as pre-processing for fiber track-
ing, where the diffusion characteristics for a single fiber orientation
are deconvolved from the fODF. As a consequence, the fODF is used to
infer on the relative number of fibers aligned with a particular axis.
This results in sharper reconstruction of thefiber orientation in compar-
ison with the dODF. It should be noted that deconvolution approaches
most often assume a canonical single fiber response. Thus, if there is a
change in the diffusion characteristics of an individual fiber (so that it
is different from the assumed canonical response), this would be
reflected in the reconstructed fODF (Parker and Jones, 2011, 2012). If
the kernel used in the deconvolution procedure stays constant, then
what we reconstruct reflects some kind of apparent fiber density
(Dell'Acqua et al., 2012; Raffelt et al., 2012).

Reconstructing fiber pathways

There are a number of algorithms that are designed to combine local
discrete (voxel-based) models of fiber orientation (derived from either
the principal eigenvector for the diffusion tensor, peaks in the dODF or
peaks in the fODF) and reconstruct continuous fiber pathways. These
techniques are collectively referred to as tractography. It should be em-
phasized that none of these methods is capable of reconstructing nerve
fibers or even fiber bundles. Instead, they compute trajectories or path-
ways through the data, towhich (hopefully) a large portion of the nerve
fibers run reasonably in parallel. These pathways are currently
interpreted both in a qualitative way, when they are used to infer on
the extent and the general course of certain fiber bundles, and in a
quantitative way, either as a three-dimensional region of interest
(ROI) from which quantitative metrics can be derived (Jones et al.,
2005a) or trying to estimate the ‘degree of connectedness’ between
brain regions (e.g., Kaden et al., 2007). The latter issue of quantifying an-
atomical connectivity from DW-MRI data has been treated systemati-
cally and critically in a recent review article by Jones (2010b) which
concluded that the orientation information encoded in the fODF/dODF
is necessary but insufficient for quantifying white matter connections.
In addition to obtaining orientation information, further microstruc-
tural information, which provides characterization of distinct sub-
compartments of the white matter, is an absolute necessity.

In contrast, measures derived from the diffusion tensor, such as
fractional anisotropy, essentially combine the contributions from
the different sub-compartments of white matter into a single metric.
Improving the biological specificity of diffusion MRI demands im-
provements in acquisition schemes (e.g. designed to maximize infor-
mation on microstructural traits other than fiber orientation).
Advanced diffusion MR methods can provide putative axonal
markers, such as ‘axon density’, mean axon diameter and axon diam-
eter distributions [CHARMED (Assaf and Basser, 2005; Assaf et al.,
2004), AxCaliber (Assaf et al., 2008), ActiveAx (Alexander et al.,
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2010)]. Quantification of myelin via diffusion is extremely problemat-
ic, and other MR contrast mechanisms such as quantitative magneti-
zation transfer imaging (Cercignani and Alexander, 2006; Sled and
Pike, 2001), and multi-component relaxometry (e.g., Deoni et al.
2008; Kolind and Deoni, 2010) hold more promise in providing puta-
tive myelin markers.

In addition to considering new contrast mechanisms, there is not
only a pressing need to improve analysis methods but also to consid-
er, more carefully, the approaches that are currently in use. For exam-
ple, one approach to quantifying connectivity between two brain
regions involves counting the number of times that a streamline can
be reconstructed between them. This can be done in two different
ways. On the one hand, one can start tracts at multiple starting points
in one or several voxels, using always the same local fiber orientation
information, usually derived from modes (principal directions) of the
local ODFs. This technique is referred to as deterministic tractography
(Conturo et al., 1999; Mori and van Zijl, 2002; Mori et al., 1999) and
can be used to estimate connectivity by counting the number of
fiber pathways starting from or passing through a certain region. On
the other hand, one may interpret the local ODF (fiber or diffusion
ODF) as a probability density distribution of the local fiber orienta-
tion, randomly sample this distribution many times, and perform
streamline tractography with each sample from always the same
starting point. The technique, usually referred to as probabilistic
tractography (Behrens et al., 2003; Koch et al., 2002), yields maps
that are related to the probability that a certain voxel is connected
to the starting point (e.g., Kaden et al., 2007).

The result of both the deterministic and probabilistic approach is
often interpreted as ‘connection strength’. However, the ability to
faithfully follow a white matter trajectory by integrating discrete es-
timates of its tangent (derived from peaks in the dODF/fODF) de-
pends on the SNR of the experiment (Huang et al., 2004; Lazar and
Alexander, 2003; Lori et al., 2002)—whichmodulates the uncertainty
in fiber orientation at each stage of the streamline propagation. It
seems strange, therefore, that the connectivity of the brain depends
on the parameters of the MR experiment.

Can ‘fiber count’ be determined from DWI data?
As we have previously shown (see Fig. 4 in Jones, 2010b), even if

the ‘true’ fiber count (in terms of number of axonal projections) is
uniform within a bundle, the number of reconstructed streamlines
in the experiment may be different just because of the length, curva-
ture and degree of branching. Yet, there is no reason to believe that a
curved and straight fiber bundle with an identical number of axon
projections, would have different capacities to carry information.

Thus, our concern is really about interpreting the number of
reconstructed streamlines as a true measurement of the number of
actual fibers (axonal projections) as would be identified if the same
piece of brain tissue was examined histologically. Moreover, our con-
cern is also on the expectation a priori that this should be the primary
and, in some cases, sole covariate of any measure of function. If all
other features of the pathway (curvature, length, width, myelination)
and experimental conditions (e.g. local variations in SNR) were kept
the same so that the only thing that differed was the number of axo-
nal projections, then one might reasonably expect the number of
reconstructed streamlines to be a good indicator of the number of ‘fi-
bers’. However, as noted above, there are many other reasons why the
streamline count may vary. Thus, we would strongly discourage the
use of the term ‘fiber count’. Rather, we propose that reporting of
the number of reconstructed streamlines i.e., ‘streamline count’ is a
far safer and unambiguous way of reporting results. It indicates that
there is a dependence on the tractography algorithm and the experi-
mental conditions.

For the same reason, the number of streamlines passing through a
given voxel will also be modulated by the same factors — so that
interpreting this measure as ‘fiber density’, as is done in the literature,
er count, and other fallacies: The do's and don'ts of diffusion MRI,
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introduces equally challenging problems for interpretation of results. To
the best of our knowledge, there is no method extant to correct for the
kinds of problems related to tract length, curvature and branching
described elsewhere (Jones, 2010b). Despite these confounding effects
of length, curvature and branching, the use of ‘fiber count’ and similar
metrics/terminology has, nevertheless, increased. They are used in
graph theoretical approaches and in mapping the ‘connectome’
(Hagmann et al., 2007, 2008, 2010; Honey et al., 2009). However,
assigning a ‘connection strength’ between two cortical nodes, without
accounting for these (non-interesting) topological sources of variance
in such metrics, is fraught with danger for robust interpretation. In
other words, although, from a Bayesian point of view, these connectivity
values are the best possible guesses (in the absence of any further infor-
mation), what is not apparent from any of these studies is the huge un-
certainty (variances) attached to them. Methods need to be developed
that compensate for differences in both length and shape of tracts.
Until such time as these methods are developed, it may be dangerous
to compare even the streamline count in white matter structures that
have different shapes.

It is important also to note that here the term ‘probabilistic’ in the
context of tractography suggests, somewhat misleadingly, that the
analysis pipeline yields some kind of formal probability that voxels
are actually connected by white matter fibers. It is not uncommon
to hear an interpretation that probabilistic tracking algorithms yield
a ‘probability of an anatomical connection’. We would like to spend
a moment considering what this might actually mean, and suggest
that the end-user might wish it to mean something similar to the
following:

“If I look at a probabilistic tracking map where I have launched
tracking from a point X, the result tells me how confident I can
be that if I was to open up the brain and look directly at the white
matter, where the map intensity is high, I am more likely to find
an actually white matter pathway that travels back to the point
X, compared to the case when the intensity is low.”

However, while this is not completely incorrect, one has to consider
three important issues. First, it is not clear what the existence of a con-
nection between two brain regions A and B actually means: if it means
that at least one axon runs between A and B, then the probabilities
would be almost always close to one, if it means that all axons starting
in A end in B (or vice versa), the probability would be zero. Both values
are clearly useless. Therefore, the most sensible thing to do is to use a
probability distribution, stating how probable it is that the connection
strength (i.e., the number of axons) exceeds a certain value. This
would require disentangling the connection strength and the probabil-
ity thereof from tractography data, which is a severe challenge, to say
the very least. See also Kaden et al. (2007).

Second, although it may be fair to assume a monotonic relation-
ship between connection probability (whatever it may be, see
above) and probabilistic tractography score, there is no exact quanti-
tative equivalence between the two. This would require a much more
detailed and formalized description of the whole chain of measure-
ment and analysis processes.

Third, tractography can only estimate a marginal probability. The
tractography score simply indicates how frequently we can recon-
struct a streamline from a particular point, or between two points,
in the brain, and there are many reasons why a streamline may not
be successfully reconstructed (Jones, 2010b), differences in true ‘con-
nection strength’ are just but one.

To date, no method has been proposed that yields a true statistical
probability, and so although the ‘probabilistic’ adjective has been
adopted now, a more appropriate adjective would be ‘stochastic’
tractography. While it is fair to take an enhanced probabilistic
tractography score (cautiously!) as an indication for increased con-
nectivity, one should (1) not interpret it literally as a probability
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(e.g., for use in statistical tests) and (2) be aware it could also be
caused by other factors (and that these biases are by far not small
or uncommon).

Finally, the reader should not infer that we are ‘throwing the baby
out with the bath water’ here. Rather, our comment is on quantitative
assessment of connectivity derived from diffusion MRI. Without ques-
tion, impressive and useful qualitative results on the shape of fiber
bundles and the connection patterns of brain regions have been
achieved by just exploiting the orientation information contained in
the diffusion-weightedMRsignal. However,while the orientation infor-
mation contains important information on brain connectivity, it is
insufficient for its complete characterization.

Comparison of microstructural properties

The sensitivity of DW-MRI to local (microstructural) tissue prop-
erties renders the technique a powerful instrument for the investiga-
tion of anatomical correlates of numerous experimental and clinical
conditions. The extent to which the random displacement of water
molecules is impeded in any direction will be dependent on numer-
ous factors that are of functional relevance including, but not limited
to, the fiber diameter, fiber density, membrane permeability, and
myelination — in addition to the intra-voxel orientational coherence
of any boundaries (Beaulieu, 2002).

Changes in these various tissue properties may be associated with
disease, development, learning, etc. Consequently, there have been a
large number of studies in recent years correlating differences in var-
ious DW-MRI derived measures between experimental conditions
(e.g., before and after learning or training) or subject groups (e.g., pa-
tients and healthy controls). For example, DWI data of patients with
Alzheimer's disease (Avants et al., 2010; Damoiseaux et al., 2009;
Gold et al., 2010; Jahng et al., 2011; Mielke et al., 2009), autism
(Cheng et al., 2010; Fletcher et al., 2010; Pugliese et al., 2009), schizo-
phrenia (Jones et al., 2005b, 2005c; Qiu et al., 2009, 2010), mild
cognitive impairment (Jahng et al., 2011), multiple sclerosis (Bodini
et al., 2009; Roosendaal et al., 2009), amyotrophic lateral sclerosis
(Ciccarelli et al., 2009; Iwata et al., 2011), Tourette's syndrome
(Neuner et al., 2010), Parkinson's disease (Menke et al., 2009), and
Huntington's disease (Rosas et al., 2010) have been compared to
healthy controls. Moreover, the effects of aging (Davis et al., 2009;
Michielse et al., 2010; Moseley, 2002; Pfefferbaum et al., 2005;
Sullivan and Pfefferbaum, 2006), development (Faria et al., 2010;
Goodlett et al., 2009; Kochunov et al., 2009), learning (Flöel et al.,
2009; Lebel et al., 2010) and intellectual performance (Liu et al.,
2010; Lee et al., 2010) were investigated. For a recent review of stud-
ies on the behavioral relevance of white matter microstructure as
quantified by diffusion MRI, see Johansen-Berg (2010) and Kanai
and Rees (2011).

In almost all of these studies, the DW-MR data were modeled by a
diffusion tensor. Scalar measures, like fractional anisotropy (FA), mean
diffusivity (MD), radial and axial diffusivity (RD, AD) (Basser, 1995;
Song et al., 2002) were then computed and mapped — and compared
either by using manually drawn regions of interest (ROIs), by sampling
the parameters of interest along a tractographically reconstructed path-
way (Jones et al., 2005a) comparison of whole brain histograms, or via
voxel-based search methods. The reader is referred to Cercignani
(2010) for an in-depth exploration of the relative strengths and weak-
nesses of each method. An interesting discussion in the light of white
matter degeneration in Alzheimer's disease can also be found in
Acosta-Cabronero et al. (2010).

Changes or differences in these measures are often interpreted as
changes or differences in the “integrity” of the white matter micro-
structure (or, in the opposite way, as structural damage, decline or
degeneration). This implies that some aspect of the white matter mi-
crostructure is damaged. While in disease and aging-related studies,
such an interpretation can be often justified, the term “integrity”
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seems to be misplaced when used in the context of FA changes relat-
ed to, e.g., learning success (Flöel et al., 2009), intelligence (Liu et al.,
2010) or creativity (Takeuchi et al., 2010).

There is no doubt that that the presence of a difference in the
diffusion-weighted signals between two or more groups of subjects,
or a correlation between a metric derived from those signals and a be-
havioral measure, is a useful outcome, if and only if it is proven to be
robust, reliable and reproducible. The dangers come when trying to
interpret these differences. Given the degenerate nature of the contri-
bution of different microstructural features to variations in signal
dephasing, it is pure fallacy to assert that a particular aspect of the mi-
crostructure is likely to be responsible for the signal difference. For
example, it is not uncommon for researchers to have found a differ-
ence in the anisotropy of the fitted diffusion tensor between two
groups — and then to say something like ‘and this probably reflects
differences in myelination’. The anisotropy in a region may also be
lower because there is a larger axon diameter (Takahashi et al.,
2002), a lower packing density (Takahashi et al., 2002) — both of
which mean fewer barriers to diffusion in a given space — or it
could be due to increased membrane permeability (reducing the ef-
fectiveness of a boundary).

Perhaps because of these multiple possible sources for the differ-
ences in the diffusion-weighted MRI signal, the rather vague terms
‘white matter integrity’ and ‘microstructural integrity’ have become
popular in the literature. While one can see themotivation for invoking
such terms, their use really should be discouraged and discontinued. In
English common usage, a loss of ‘integrity’ is a serious problem. For ex-
ample, if there is a transient change in the permeability of the axonal
membrane — is the microstructural ‘integrity’ of the system really re-
duced? Moreover – and most importantly – as demonstrated by
Pierpaoli and Basser (Pierpaoli et al., 1996) over a decade ago, the
most important determinant of the anisotropy of a uni-modal Gaussian
tensor fitted to the data is the ‘architectural paradigm’ — i.e., exactly
how the subunits (axons) are laid out in the voxel. It is a trivial mind-
experiment to consider two voxels, A and B, in the white matter, each
comprising N fibers. In both voxels, the axon diameter, membrane per-
meability and myelination of each axon is the same. So — at the ultra-
structural level, the ‘integrity’ of each axon is identical. However, in
voxel A, all the axons are aligned along the same axis and densely
packed,while in voxel B – the axons aremuch less coherently organized
– with a range of orientations (such as might arise from fibers fanning,
branching, crossing, twisting). The anisotropy of the tensor fitted to
voxel A will be much higher than that of voxel B — but it would be a
complete fallacy to argue that the microstructural integrity was lower
in voxel B. Yet— this sort of logic is routinely applied in the interpreta-
tion of DW-MRI data in the literature. Such imprecise and potentially
misleading terminology is unhelpful for scientific understanding.

To take a further example: as the brain develops, and more con-
nections are formed, so that the intra-voxel orientational coherence
is reduced, with a concomitant reduction in diffusion anisotropy,
should we infer that brain maturation entails a loss of white matter
integrity? For a particular ‘DON'T’ — we stress ‘DON'T blindly inter-
pret changes in the diffusion-weighted MR signal as a change in mi-
crostructural integrity!’

It is also important to note that FA is a localmetric that is derived just
for thewatermolecules confinedwithin the image voxel. Thus, inferring
on a connection (which typically occurs over a larger scale-length), and
therefore on connectivity, is extremely problematic. Moreover, FA is
modulated by the intra-voxel orientational dispersion, the myelination,
the packing density, membrane permeability, and partial volume effects
in addition to the number of axons. Thus, a change/difference in FAmost
probably reflects some changes/differences in some aspects of connec-
tivity, although we cannot really say what precise aspect, and into
which direction the change. Thus, one can see that any notion of being
able to relate the voxel-derived FA metric in a linear fashion to ‘connec-
tivity’, such that, for example, low FA=low connectivity, high FA=high
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connectivity, is completely flawed, and thus we stress ‘DON'T blindly
interpret changes in anisotropy as a change in connectivity in any quan-
titative way!’

Independently of the appropriateness of the term “integrity”, the
actual meaning of the tensor-derived measures is extremely ambigu-
ous. The tensor is usually described by its eigenstructure, comprising
eigenvectors and eigenvalues. As pointed out above, under the condi-
tions of reasonably parallel fibers throughout the voxel and in the
low-b-value regime, the single diffusion tensor model is adequate.
In this scenario the eigenvector associated with the largest (principal)
eigenvalue indicates the main fiber orientation, while the principal ei-
genvalue, often referred to as axial diffusivity (AD), describes the
water mobility along this axis and the other two eigenvalues, referred
to as radial diffusivity (RD), should be similar and reflect water mobil-
ity perpendicular to the fiber axis. The relationship between AD and
RD (degree of anisotropy) can then be expressed by measures such
as fractional anisotropy (FA), which denotes the ratio of standard de-
viation and root mean square of the eigenvalues. It is clear that in
such a situation, increasing axonal density, reducing axonal caliber
and increasing the degree of myelination should all lead to reduced
RD and therefore elevated FA.

Indeed, it has been convincingly demonstrated in eight different
fiber tracts in shiverer mice that myelin loss alone (without loss or
degeneration of axons) can cause an increase in RD, while the AD re-
mains unchanged (Song et al., 2002), see also Roosendaal et al.
(2009) and Stricker et al. (2009). It was argued that, in contrast, axo-
nal loss would not have affected RD. This argument was based on the
assumption, put forward by earlier researchers (Klingberg et al.,
1999; Wimberger et al., 1995), that the effect of myelin on the RD is
due to hindrance of transmembrane water transport by the myelin
sheath. It is not clear whether this transmembrane transport really
has an impact on water diffusion at the timescales considered here.
According to Assaf and Cohen (2000) the signal modeled by the diffu-
sion tensor depends mainly on extra-axonal diffusion for the small
b-values considered. An alternative explanation is that myelin loss
opens extracellular spaces (see, e.g., Fig. 2 in Song et al., 2002),
allowing for more free diffusion perpendicular to the main fiber direc-
tion. However, the same effect would then be observed for axonal
loss. Hence, an increase in RD at low b-values can have multiple
meanings, including myelin loss and loss of axons.5

However, as has been emphasized above, the assumption that
white matter fibers run parallel within a voxel often does not hold
in general, especially in the human brain, with differing reports in
the literature on the amount of complexity present.

The exact number of voxels that are deemed to contain more than
one fiber populations will obviously depend on the data quality, the
model and the analysis pipeline used. The angular resolution of the sam-
pling scheme, together with the b-value and the SNR will impact on the
minimum resolvable inter-fiber angle and, therefore, the number of
distinct fiber voxels that can identified within a voxel. For example,
Behrens et al. (2007) only found that one third of voxels contain 2
fiber populations. Jeurissen et al. (in press), however, using more
extensive data acquisition and alternative modeling technique estimate
the proportion of WM voxels containing crossing fibers to be approxi-
mately 90%, using constrained spherical harmonic deconvolution, and
63% when using the automatic relevance detection approach of Behrens
et al. (Cohen and Assaf, 2002).

Of course, the likelihood of finding any voxels in which all axons
within that voxel are perfectly co-axial is exceedingly unlikely. Thus,
even a ‘spreading’ could ultimately be resolved into multiple fiber
populations and so, as the techniques improve even further, all white
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matter voxels could ultimately be deemed to contain ‘crossing fibers’.
While this will be ameliorated by moving to higher resolution acquisi-
tions, again — it is unlikely that many voxels will contain axons that
have a single orientation.

In such situations, RD and AD are additionally influenced by the ori-
entation spread of thefibers. The tensormodel then effectively becomes
completely meaningless, when more than one principal orientation is
present in a voxel, e.g., at fiber bundle crossings (Wheeler-Kingshott
and Cercignani, 2009). Note that this situation affects between one
and two thirds of the voxels in the human brain (Behrens et al., 2007;
Descoteaux, 2008; Jeurissen et al., 2010).

Consequently, in the majority of voxels of a brain DT-MRI data set
it is very difficult to interpret observed differences or changes in ten-
sor derived measures in terms of a specific microstructural attribute.
For example, a decrease of MD and RD (and the associated increase
in FA) in the Arcuate fascicle as found in high functioning autism
(Fletcher et al., 2010) could be due to a more coherent alignment of
fibers in the Arcuate, fewer crossing fibers from other bundles, higher
density or stronger myelination of the Arcuate fibers, or even a loss of
certain axonal fibers within the Arcuate, resulting in the remainder
being more coherently organized, or a combination of any, or all, of
these factors.

Part of the ambiguity in the interpretation of differences in DW-
MRI derived measures is rooted in the measurements themselves.
Limited spatial and angular resolution as well as the restriction to a
single or a few b-values limit the information content of the data.
However, this ambiguity is further increased by the use of the diffu-
sion tensor model – which assumes anisotropic Gaussian diffusion –

as a basis for all these comparisons. This model accommodates nei-
ther more complex directional dependencies nor deviations from
the single-exponential decay, e.g. due to the presence of compart-
ments with different diffusion constants or to restricted diffusion
within the axons (Assaf and Cohen, 1998a, 1998b; Basser and Jones,
2002; Mulkern et al., 1999; Niendorf et al., 1996). In order to better
account for non-mono-exponential (non-Gaussian) decay, diffusion
kurtosis imaging (DKI) has been proposed (Jensen and Helpern,
2010; Jensen et al., 2005; Lu et al., 2006). This approach, particularly
when using data collected along different axes to characterize the ori-
entation dependence yields additional sensitivity towards tissue mi-
crostructure (Cheung et al., 2009; Hui et al., 2008) and confers
several advantages. First, deviations from the Gaussian assumption,
as expressed by the excess kurtosis along a given axis, are direct indi-
cators of barriers along that particular axis. Second, DKI provides a
more objective characterization of the diffusion propagator, in that
the dependence of the estimated diffusivity on the b-value is elimi-
nated or at least strongly reduced. However, the technique is certain-
ly not without limitations. The most severe disadvantage is that the
method requires that data be acquired over multiple b-values. For ex-
ample, Cheung et al. (2009) used five non-zero b-values between 500
and 2500 smm−2 to estimate the direction dependent kurtosis in de-
veloping rats. Moreover, as is the case with diffusion tensor MRI, all
that can be inferred from a change in the kurtosis — is that there is
something in the tissue microstructure that is changing the way
that molecules can diffuse. More kurtosis means more deviation from
Gaussian diffusion propagator. Although one may interpret such
changes as arising from a particular sub-component (e.g., “more kurto-
sis means more axonal membranes”) — such inferences are not sub-
stantiated. The kurtosis does not involve any biophysical model — and
just arises from a mathematical expansion of the diffusion-weighted
signal as a function of the b-value.

As mentioned earlier, an alternative way to account for the non-
monoexponential nature of the b-value dependence of the signal
has been proposed by Assaf et al. (2004). These authors proposed
an approach, driven by a biophysical model, called the composite hin-
dered and restricted model of diffusion (CHARMED), which assumes
a combination of intra-axonal restricted and extra-axonal hindered
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diffusion with different diffusivities. While additional b-values are
needed, by varying the number of gradient directions with the
b-value (such that more dense sampling of the angular space is
performed as the b-value is increased), and using different sampling
vectors for each b-value, Assaf and Basser (2005) could apply the
CHARMED method using only 169 different diffusion weightings to
human subjects, albeit only to an axial slab of 3 cm thickness with
an isotropic resolution of 3 mm. The parameters of the CHARMED
model, e.g., the volume fractions of the different compartments,
hold great promise in delivering sensitive, informative and interpret-
able microstructural indices. De Santis et al. (in press) have recently
shown how the quantities obtained from the CHARMED model can
be used to infer the excess kurtosis, providing a link between these
disparate analysis approaches.

As described above, a number of HARDI techniques have been de-
veloped to account for multiple fiber directions in a voxel. Scalar mea-
sures were developed to describe important properties of these ODFs.
For example, Tuch (2004) proposed a number of such measures based
on q-ball imaging. The generalized fractional anisotropy (GFA) is de-
fined, in analogy to the FA, as the ratio of the standard deviation of the
orientation densities in the different gradient directions to its root
mean square. Hence, this measure somehow describes the “degree
of variation” of the ODF. Also higher order moments are possible,
such as generalized skewness and kurtosis (Cook et al., 2007). How-
ever, as the densities are not Gaussian distributed, this description
is necessarily incomplete and can be misleading. Moreover, quantita-
tive indices derived from higher order models than the tensor (such
as the GFA) have not found widespread usage, and these measures re-
main “angular” measures because the radial part of the diffusion sig-
nal is never or rarely used/included.
Interpretation

The interpretation of DW-MRI data is essentially a model based pro-
cedure, even if no formal, mathematically described model is invoked,
i.e., the measured data are combined with a number of assumptions
about the underlying processes and structures. These model assump-
tions always represent a simplification of reality, i.e., they neglect certain
aspects of the true generative mechanism of the data. For the choice of
the model, three aspects are important: (a) the quality and quantity of
the available data; (b) which aspects of the underlying processes and
structure one is interested in, i.e., which type of conclusion is to be
drawn from the result; and (c) whether the model is adequate, i.e., to
what extent the estimation of the parameters of interest is biased by
the inevitablemodel simplifications. In the followingwewill briefly dis-
cuss these aspects.

A ubiquitous danger with any model-based approach is over-fitting,
i.e., trying to extract more information from the data than they contain.
A common example is the occurrence of spurious peaks in spherical
deconvolution results. The phenomenon of overfitting triggers two im-
mediate questions: (1) how to avoid it and (2) how to recognize it. The
first question can be addressed comparatively easily, by ensuring ade-
quate quantity (numbers of directions and b-values, voxel resolution)
and quality (SNR) of data, and, if necessary by reducing themodel com-
plexity and by regularization (which also reduces the model complexi-
ty). The second question is a tricky one. If overfitting occurs, features in
the solution start to depend mainly on noise. As noise is random, repe-
tition of the experiment might reveal overfitting, as the noise depen-
dent features in the solution will then turn out as unstable. In other
words, here we would test the generalizability of the model. Often, an-
atomical knowledge might help to recognize overfitting. Here, some
“gut-feeling” comes into play: if some unusual details occur in the
results, one has to be suspicious and closely observe whether these
features remain stable over several subjects of different experiments
in the same subject.
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While we favor refined models driven by the underlying biophys-
ics as a way forward, we note that having such a model does not
imply that the parameters can be interpreted unambiguously. They
must still be interpreted with care. For example, complex models
can have very correlated parameters, and unmodeled features in the
data can lead to biases in some of the parameter estimates.

When selecting a particular analysis method, it should be borne in
mind what type of conclusion will be drawn from the result. Very com-
monly one wants to infer on the local fiber directions or, more globally,
on the course of fiber trajectories. For this type of conclusion, local
models should be used that reflect the true angular structure of the dif-
fusion propagator (almost invariably requiring something more than a
single tensor model). In order to gain insight into the reproducibility
or “determinedness” (precision) of the trajectories, some sort of proba-
bilistic tracking scheme is recommended. In other cases, however, the
question is simply whether orientation-dependent aspects of the mi-
crostructure have changed due to, e.g. illness, treatment, learning, etc.,
or are different between groups. Here, also the diffusion tensor, or de-
rived quantities, such as the fractional anisotropy (FA), can be extreme-
ly useful, especially if the data quality (constrained perhaps by the time
available for data acquisition) renders the use of more complex models
risky. The danger lies in the interpretation. A difference in FA simply
means that some orientation dependent aspects of the microstructure
of the tissue are different. Any further interpretations, such as on the de-
gree of myelination, axon density or indeed ‘integrity’ must be backed
by strong theoretical foundations or additional data from other sources.
Hence the appropriateness of amethod depends on the type and quality
of the data as well as on the purpose of the investigation.

Conclusions

As we stated at the outset, the only thing that that we can say with
any certainty in diffusion MRI is that we measure a signal change
when a motion-sensitizing gradient is applied along a given axis. In-
ferring anything else is dependent on the quality of the model and
the quality of the data. There are many mechanisms by which the dif-
fusion weighted signal can be modulated. This includes but is not lim-
ited to, the myelination, the axon density, the axon diameter, the
permeability of the membrane — but also, and importantly, the way
in which the axons are laid out within the voxel. Thus one can have
myelination, axon density and membrane permeability that is
completely within normal range — but yet, if there is a difference in
the architectural paradigm (i.e., the manner in which the axons are
laid out in the voxel), then there can be a difference in the anisotropy.
The study of such differences in the architecture within the voxel
could yield new insights into, for example, developmental trajectories
or genetic influences.

However, as we have discussed in some depth, the ability to un-
ambiguously map the layout of axons within a voxel by simply ‘listen-
ing’ to the outside of the voxel is a serious challenge. But – what
should be absolutely clear is that using simplistic models for diffusion
(such as the unimodal Gaussian tensor)will not provide those insights –
and, moreover, the notion that one is looking at ‘white matter integrity’
should be abandoned. We are not suggesting that DT-MRI is redundant.
Indeed, due to the fact that it measures the displacement of water mol-
ecules at the scale of tens of microns, it is exquisitely sensitive to any
change in tissue microstructure — and therefore could provide a useful
‘first port of call’ in investigations of white matter in health, develop-
ment and disease. However, onewill quickly hit a brick-wall in interpre-
tation if just the tensor model is used.

In the sameway that scalarmeasures of anisotropy can bemodulated
by geometrical factors, the success of reconstructing a continuous path
through the diffusion MR data field can be influenced by many factors
including stochastic errors (Johnson RF and physiological noise) and de-
terministic errors. Again, differences in a tracking result might be found
between two groups of subjects (e.g. controls versus patients) or a
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tracking score found to correlate with performance on a task in a
group of individuals, and this forms the basis for further investigation.
However, asserting categorically that the change in those scores is
beingdriven by a specific biological or physiological process is extremely
problematic. Again, the only thing that can be inferred is that there is a
difference in our ability to form a continuous path through the data
field –which, in turn, is produced from a series of measurements of sig-
nal loss – all else is modeling assumption.

We hope that this article will help to clarify certain misconcep-
tions that appear to be prevalent in the literature and provide good
reasons for discontinuing the use of certain interpretative terminolo-
gies. We understand the motivation for introducing terms into the lit-
erature that allude to biological/physiological processes, as it is these
terms that help to ‘sell’ a paper to the reader. However, we believe
that just because we have a huge number of papers that report on
the application of diffusion MRI using such inappropriate terms and
interpretations, does not mean that the practice should continue.
We therefore urge journal Editors and reviewers of manuscripts to
challenge authors, who present interpretations such as ‘fiber count’,
‘white matter integrity’ and ‘connection strength’, to justify their
usage of such terms— and if insufficient justification can be provided,
to insist that they be removed from the manuscript. In summary, we
present our list of recommendations.

The do's

a. Carefully consider the question(s) to be asked of the data and con-
sider whether the data acquisition/analysis allows you to answer
these questions.
As most of the recommendations given below (small voxels, many
directions, high diffusion weighting, high SNR) are in mutual com-
petition, the user has to decide where to invest the precious acqui-
sition time. For simple questions such as unspecific white matter
differences between two groups, there are minimal demands on
the data acquisition and analysis, the diffusion tensor might suf-
fice. On the other hand, a high SNR might be valuable to increase
statistical power.
In contrast, detailed interpretations of differences in tissue micro-
structure demand far more sophisticated acquisition/analyses:
higher or evenmultiple b-values as well as many directions are es-
sential.
Likewise, tractography sufficient angular resolution and, even
more importantly, high spatial resolution (voxel size), in conjunc-
tion with sophisticated local models, are absolutely crucial.

b. Carefully consider the impact of pre-processing steps on the quanti-
tative metrics to be derived from the diffusion-weighted signal.
There is a multitude of software packages available to analyze
diffusion-weighted MR data. We caution the reader that not all soft-
ware packages pre-process the data in the same way— and this can
lead to differences in data quality, potentially power to detect group
differences/individual differences/correlations between DW-MRI-
derivedmetrics and othermeasures (e.g. cognitive performance, dis-
ability etc.). Our sub-set of recommendations is as follows:
• For diffusion tensor estimation, choose a software package that
provides non-linear estimation of the tensor without logarithmic
transformation of the signal. If this is unavailable, then choose a
routine that provides a weighted linear least squares fit to the
log-transformed data. Many software packages in use simply use
an ordinary linear least squares fit to the data, which ignores the
heteroscedasticity introduced by the logarithmic transformation
of the data. If available, we recommend to use robust estimation
routines (Geman–McClure estimator, RESTORE), to reduce the im-
pact of outliers on the data and to avoid transients in the data
impacting on conclusions.

• We also recommend the deployment of methods to ameliorate
CSF-based partial volume artefacts. If use of a FLAIR-based
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diffusion-weighted MR acquisition is appropriate, then this
could be utilized. Otherwise, modeling approaches that ac-
count for CSF-based contamination (e.g., by fitting two com-
partments to the signal — with one assigned to tissue, and
one assigned to CSF), should be used. We do not recommend
using any local or global estimate of tissue volume to estimate
CSF-contamination.

• When correcting for eddy-currents, we recommend choosing
a software package/routine that will modulate the signal by
the determinant of the Jacobian transformation matrix. This
simple step is overlooked in many software packages.

• Likewise, when correcting for subject motion, ensure that any
rotations that are applied to a given diffusion-weighted vol-
ume, are also applied to the encoding vectors. Again, this is a
trivial step — but is not included in many pre-processing pipe-
lines.

• Always inspect the raw data prior to modeling, and after
fitting the model. Examining the residuals is extremely useful
in identifying systematic errors in the data and to identify in-
adequacies in the model.

c. For reconstruction of the orientation density function, use the
highest sensitivity DWI sequence available.
Higher diffusion-weightings provide higher angular resolutionwhen
resolving complex fiber architectures. However, see next point….

d. Whatever maximum diffusion-weighting is appropriate for the
question being asked, ensure that the SNR in the images never
drops below 3:1.
When dealing with magnitude data, the noise-distribution is non-
Gaussian, which biases measurements at low SNRs — unless appro-
priate noise models (Rician/non-central chi) are used. We stress this
is a bare minimum. DO check to see that the SNR used is fit for pur-
pose, especially with regard to the end application.

e. Use High Angular Resolution Diffusion Imaging (HARDI) whenever
possible, using the largest number of gradient orientations that
scanner and subject time allows.
While this is of clear benefit for resolvingmultiple fiber orientations,
it is also important to ensure statistical rotational invariance of sim-
ple metrics such as FA and mean diffusivity derived from the tensor
model.

f. Use the smallest isotropic voxels possible, consistent with this limit-
ing SNR.
The higher the resolution, the better chance of reconstructing finer
pathways — and, moreover, the less ‘powder-averaging’ of different
fiber orientations within the voxel.

g. For tractography, use software that accounts for fiber crossings.
With the number of voxels containing 2 or more fiber populations in
the brain estimated to be in the region of 90%, it is clear that failing
to account for crossing fiber configurations will lead to erroneous
fiber trajectory reconstructions.

The don'ts

a. Don't assume that the principal eigenvector of a diffusion tensor is
a good indication of the actual fiber orientations in all voxels.
Although in a limited set of places (where the bundle-to-voxel
size is favorable and all fibers are highly parallel in the voxel),
the principal eigenvector may do a good job, it is unsafe to use
this simple model throughout the whole brain.

b. Don't assume that tractography using a single diffusion tensor will
be adequate for all fiber trajectories in the brain.
Most fibers cross with others, diverge/converge, twist or kink at
some point — and so single tensor-based tracking will result in
fiber pathways that are always in error somewhere along their
length.

c. Except in the case of clinically-diagnosed conditions explicitly
impacting onwhitematter, including demyelinating disease, chronic
Please cite this article as: Jones, D.K., et al., White matter integrity, fib
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ischemia and tumor infiltration, don't use the term ‘white matter
integrity’.
Use of the term ‘white matter integrity’ is especially discouraged
when talking about individual differences in white matter in healthy
individuals.

d. Don't confuse fractional anisotropy with ‘white matter integrity’.
FA is naturally low in normal white matter areas where fibers cross.

e. Don't use the phrase ‘fiber count’ when referring to data derived
from diffusion MRI.
There are multiple reasons why the number of fibers reconstructed
between two regions may be different — some related to real anat-
omy, others related to performance of the tracking algorithm.
‘Streamline count’ is a far preferable term.

f. Don't use tractography to provide a quantitative estimate of ‘con-
nection strength’.
Tractography algorithms largely deploy the orientation information
encoded in the DW-MRI signal. To date, no index derived from
tractography has been proposed to quantify ‘connection strength’
in a physiological or anatomical context. It is not possible to reliably
estimate the number of axonal projections, for example, from
tractography.
Our final quote, in keeping with the title of this manuscript, is “Do
continue to use diffusion MRI – it is a fantastic technique for under-
standing the brain – but don't over-interpret, mis-interpret andmis-
use the terminology!”
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