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Functional MRI (fMRI) allows one to study task-related regional responses and task-dependent connectivity
analysis using psychophysiological interaction (PPI) methods. The latter affords the additional opportunity to
understand how brain regions interact in a task-dependent manner. The current implementation of PPI in
Statistical Parametric Mapping (SPM8) is configured primarily to assess connectivity differences between
two task conditions, when in practice fMRI tasks frequently employ more than two conditions. Here we
evaluate how a generalized form of context-dependent PPI (gPPI; http://www.nitrc.org/projects/gppi),
which is configured to automatically accommodate more than two task conditions in the same PPI model by
spanning the entire experimental space, compares to the standard implementation in SPM8. These
comparisons are made using both simulations and an empirical dataset. In the simulated dataset, we
compare the interaction beta estimates to their expected values and model fit using the Akaike information
criterion (AIC). We found that interaction beta estimates in gPPI were robust to different simulated data
models, were not different from the expected beta value, and had better model fits than when using standard
PPI (sPPI) methods. In the empirical dataset, we compare the model fit of the gPPI approach to sPPI. We found
that the gPPI approach improved model fit compared to sPPI. There were several regions that became non-
significant with gPPI. These regions all showed significantly better model fits with gPPI. Also, there were
several regions where task-dependent connectivity was only detected using gPPI methods, also with
improved model fit. Regions that were detected with all methods had more similar model fits. These results
suggest that gPPI may have greater sensitivity and specificity than standard implementation in SPM. This
notion is tempered slightly as there is no gold standard; however, data simulations with a known outcome
support our conclusions about gPPI. In sum, the generalized form of context-dependent PPI approach has
increased flexibility of statistical modeling, and potentially improves model fit, specificity to true negative
findings, and sensitivity to true positive findings.

Published by Elsevier Inc.
Introduction

Functional MRI allows one to study task-related regional brain
responses and task-dependent connectivity analysis using psycho-
physiological interaction (PPI) methods. The latter affords the
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additional opportunity to understand how brain regions interact in
a task-dependent manner (Chee et al., 2010; Dodel et al., 2005; Kim
and Horwitz, 2008; Minnebusch et al., 2009; Schmitz and Johnson,
2006; Snijders et al., 2010). From 1998 to 2003 there were 81 studies
citing Friston and colleagues' initial paper describing psychophysio-
logical interactions compared to 299 citations from 2004 to 2009
(Friston et al., 1997). Likewise, the important paper from Gitelman
and colleagues (2003), which enabled psychophysiological interac-
tions to be applied to event-related designs by incorporating the
hemodynamic response, has spurred a similar increase in citations;
between 2004 and 2006 there were 29 citations compared to 57
citations from 2007 to 2009. However, despite the increasing use of
PPI and its potential role for advancing our knowledge regarding the
functional integration of brain activity, the standard implementation
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in SPM8, where the psychophysiological term is formed by the
interaction of neural activity and a difference vector of two tasks (e.g.
A–B), has two major limitations. Currently, a single PPI can only
identify regional effects related to differences between psychological
contrasts and not similarities between contrasts. Second, the standard
implementation described by Friston et al. (1997) and Gitelman et al.
(2003), using a psychological vector of A or a psychological vector of
A–B, does not span the space of all conditions and as such is
potentially limited to simple experiments with only one or two
conditions, respectively, or experiments that can be collapsed into
two conditions for analysis. Here we utilize a generalization of the
existing PPI methods that address these limitations (Higo et al., 2011;
McLaren et al., 2008).

The initial framework for psychophysiological interactions was to
identify regions that differ in connectivity by context or condition in
block-designed fMRI studies (Friston et al., 1997; from here forward,
we will refer to the modulation of connectivity by a psychological or
behavioral context as “context-dependent connectivity”), thereby
enabling inference regarding condition-specific functional integra-
tion. However, in block or event-related task designswith two ormore
experimental conditions, onemay be interested not only in condition-
specific functional integration, but also where functional integration
may be similar across conditions. When Gitelman et al. (2003)
extended PPI to event-related designs by incorporating a deconvolu-
tion of the BOLD response step into forming the psychophysiological
interaction, they started with the notion that psychophysiological
interactions occur at the neural level, which results in a change in the
BOLD signal, rather than at the level of BOLD signal, which is an indirect
and downstreammeasure of neural activity. Since, mathematically, the
interaction of BOLD signal is not the same as the interaction of neural
signal convolved with the canonical HRF, Gitelman et al. (2003)
implemented a deconvolution step to arrive at an estimate of neural
signal on which interaction analyses are performed. In a study of
simulated neural activity, the BOLD signal, and PPI, Kim and Horwitz
concluded that PPI parameters are robust and generally agree with the
underlying neural interactions (Kim andHorwitz, 2008). Their conclusion
bolsters the use of PPI as non-invasive tool to investigate the dynamics of
functional connectivity.

Both Gitelman et al. (2003) and Kim and Horwitz (2008)
demonstrated the importance of properly modeling the underlying
neural activity. However, the standard implementation of PPI in
SPM8, using a psychological vector of A or a psychological vector of
A–B, is still limited to models of only one or two conditions,
respectively, or experiments that can be collapsed into two condi-
tions for analysis, as only a single PPI regressor is created per first
level analysis, whereas experiments often contain more than two
conditions. For example, in an event-related design with two
conditions, there are at least 3 discrete neuronal states defined by
the experimenter: (i) activity during the processing of the stimulus
for condition 1; (ii) activity during processing of the stimulus for
condition 2; and (iii) activity while there is no stimulus being
processed (e.g. “baseline” periods or null events). These states may all
potentially differ from each other and collapsing two to test against
the third is less desirable than modeling each condition separately, as
this leads to a model that does not span the full space of the
conditions. The generalized form of context-dependent PPI (gPPI)
spans the full space of the experimental design.

In this paper we describe the theoretical framework for the
generalized form of context-dependent PPI (gPPI; Higo et al., 2011;
McLaren et al., 2008). Following this description we use simulations
to show, based on a gold standard, that gPPI consistently estimates
psychophysiological interactions with greater accuracy. Additionally,
we also use simulations to show that between-subject PPI effects can
be both over and underestimated when gPPI is not utilized. Finally,
we demonstrate some strengths of this approach using empirical data
from an fMRI study of face recognition (Xu et al., 2009).
Materials and methods

Statistics of PPI approaches

The modeling of each condition independently is already standard
practice when investigating fMRI activation patterns (Friston et al.,
1995a, 1995b). The generalized form of context-dependent PPI (gPPI)
applies this principle to PPI analysis and is available in the automated
gPPI toolbox (http://www.nitrc.org/projects/gppi). The Statistical
Parametric Mapping (SPM8; Wellcome Department of Imaging
Neuroscience, University College London, UK) PPI (sPPI) approach
and gPPI approach are both based on the same underlying concepts
and use the following models (Friston et al., 1997; Gitelman et al.,
2003):

Yk ¼ H xað Þ ð1Þ

Yi ¼ H xa � gp
� �h i

� βi þ YkH gp
� �

G
h i

� βG þ ei ð2Þ

where H is the HRF in Toeplitz matrix form; Yk is the BOLD signal
observed in the seed region; xa is the estimated neural activity from
the BOLD signal in the seed region (Gitelman et al., 2003); Yi is the
BOLD signal observed at each voxel in the brain; βi is a matrix of the
beta estimates of the psychophysiological interaction terms; βG is a
matrix of the beta estimates of the seed region BOLD signal (Yk),
covariates of no interest (G), and task regressors that are the
convolution of psychological vectors H(gp); and ei is a vector of the
residuals of the model. In the sPPI approach, gp is a vector formed by
multiplying the condition ON times (onset times plus stimulus
duration — when the stimulus or psychological state is presented to
the participant or when the participant experiences a defined
psychological/experimental state) by a weighting vector (see Figure
5B of Gitelman et al., 2003). As of revision 3270 in SPM5, the
weighting vector does not need to have a mean of zero as the
psychological vector is no longer mean-centered before convolution
(ftp://ftp.fil.ion.ucl.ac.uk/spm/spm5_updates/Updates_README.txt).
This change removed the requirement of weighting the conditions
based on the number of trials. In the gPPI approach, gp is a matrix of N
columns, where N is the number of conditions in the experiment and
formed by separating the condition ON times into separate columns.
This is the only difference between the two methods, but is sufficient
to account for the different neuronal states in both the psychological
regressors and the interaction regressors. Eq. (2) is the general linear
model for the PPI first-level statistics.

In Fig. 1 we graphically compare the standard PPI (sPPI) with the
generalized form of context-dependent PPI (gPPI). In both sPPI and
gPPI, the analyses start with identifying the condition ON times
(Fig. 1A). In sPPI, the condition ON times for conditions A, B, and C are
multiplied by a weighting vector (e.g. in this data [-1 1 1]) and are
then convolved with the canonical hemodynamic response function
(HRF; Fig. 1B) to form the task regressor (Fig. 1C). However, in gPPI,
the condition ON times for conditions A, B, and C are separately
convolved with the HRF (Fig. 1B) for each condition to form a set of
task regressors (Fig. 1D). This step forms the task/psychological
regressor(s) for the model (H(gp) in Eq. (2)). The latter is similar to
the approach taken by Dodel et al. (2005) to address context-
dependent connectivity by separately computing the correlations
between regions for each condition. However, their method analyzes
the correlations rather than the interaction of the neural signal and
experimental conditions. Next, both sPPI and gPPI approaches extract
the BOLD signal from an ROI and remove the effect of noise
covariates, if any (matrix G, e.g. motion regressors). This adjusted
signal is deconvolved (Fig. 1E, matrix Yk) to obtain an estimate the
neural activity (Gitelman et al., 2003). In the sPPI approach, the
estimated neural activity is multiplied by the product of condition ON
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Fig. 1. Exemplars of inputs and outputs of the sPPI and the gPPI approaches. A: a vector of condition on times (A, B, C). B: SPM8 canonical hemodynamic response function (HRF).
C: psychological vector for GLM for the sPPI approach using [-1 1 1] for A, B, and C, respectively, formed by multiplying the vector of condition ON times (A) by the weights and
convolving the result with the canonical HRF. D: psychological vectors for the GLM for the gPPI approach formed by separately convolving a vector of each condition's ON times with
the canonical HRF. E: extracted BOLD signal from a region of interest for use in the GLM for both models and in the deconvolution process to estimate the neural response.
F: psychophysiological interaction vector for GLM for the sPPI approach using [-1 1 1] for A, B, and C, respectively, formed by multiplying the condition on times (A) by the weights,
then multiplying by the neural signal and convolving with the canonical HRF. G: psychophysiological interaction vectors for the GLM for the gPPI approach formed by separately
multiplying a vector of each condition's ON times with the neural signal and then convolving the canonical HRF.

1279D.G. McLaren et al. / NeuroImage 61 (2012) 1277–1286
times for conditions A, B, and C and the weighting vector (e.g. in this
data [−1 1 1]) and then convolved with the HRF (Fig. 1F). However,
in the gPPI approach, the estimated neural activity is multiplied by
the condition ON times for conditions A, B, and C separately and then
convolved with the HRF (Fig. 1G). The sPPI approach results in three
vectors (Figs. 1C, E, F), while the gPPI approach results in 2N+1
vectors (Figs. 1D, E, G).

The generalized form of context-dependent PPI is expandable to
an infinite number of conditions, given enough trials and time points.
This allows the analysis to span the entire space of experimental
conditions, rather than partial models that only partially span the
experimental space. However, as the number of conditions is
increased, the number of regressors in the model is also increased,
while the accuracy of the estimates is simultaneously decreased.
Furthermore, methods that span the entire experimental space allow
for psychophysiophysiological interactions to investigate how two
regions interact to affect a third area where the effect may differ
based on condition, although the interpretation becomes much more
difficult with added terms.

While multi-condition PPI modeling is possible in FSL, the effect of
spanning the entire experimental space compared to simple subtraction
of two conditions as done in SPM8 has not been investigated.
Additionally, the automated gPPI toolbox implements the technique of
spanning the entire experimental space in the SPM8 framework, which
may have the advantage over FSL by forming the psychophysiological
interactions at the neural level given the deconvolution step described
above (Gitelman et al., 2003).

Simulated data

Simulated data were used to demonstrate the potential improve-
ment in using gPPI over several other possible PPI models. The use of
simulated data allows the generation of target voxels with a known
psychophysiological interaction with the seed region without error.
Thus, the models can be interpreted in the accuracy of the interaction
estimate by comparing the estimate to the gold standard of the actual
interaction value. If random noise is added to both the seed region and
target voxels, then between-subject analyses can be use to evaluate the
PPI effect across seed regions akin to a group analysis. If all models
produce accurate estimates and have the same between-subject
effects, then there is no advantage of using gPPI from a theoretical
perspective.



Table 1
Accuracy of psychophysiological interaction estimates: 2 conditions, no fixation.

Beta weights for simulated data Models

PPIA PPIB A B Seed Constant sPPI sPPI+tasks sPPIplus gPPI2

0.5 −0.5 0.5 −0.5 0.25 100 0.50 (0.50) 0.50 (0.50) 0.50 (0.50) 1.00 (1.00)
a a–1 0.5 −0.5 0.25 100 0.00 (0.50) 0.03 (0.50) 0.50 (0.50) 1.00 (1.00)
0.5 −0.5 a a–1 0.25 100 0.57 (0.50) 0.50 (0.50) 0.50 (0.50) 1.00 (1.00)
a a–1 a a–1 0.25 100 0.07 (0.50) 0.03 (0.50) 0.50 (0.50) 1.00 (1.00)
a −a 0.5 −0.5 0.25 100 −0.14 (−0.14) −0.14 (−0.14) −0.14 (−0.14) −0.28 (−0.28)
0.5 −0.5 a a 0.25 100 0.50 (0.50) 0.50 (0.50) 0.50 (0.50) 1.00 (1.00)
a −a a a 0.25 100 −0.14 (−0.14) −0.14 (−0.14) −0.14 (−0.14) −0.28 (−0.28)

Beta weights were multipled by a design matrix with the following regressors: PPI for condition A, PPI for condition B, HRF task regressor for condition A, HRF task regressor for
condition B, seed voxel timecourse, and a constant. All datasets used 100 different values for a. Values represent the mean estimated interaction weight of A–B (the mean expected
value of the interaction of A–B). Bold values indicate models where the model did not capture the true interaction. a is random number generated from the randn function in
MATLAB®, which generates random numbers with a mean of 0 and a variance of 1.
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Simulated data were generated with the following approach based
on the gPPI framework: (1) create a seed region timecourse with
known task effects by summing the products of the predicted HRF/task
regressors and their weighting factors 1, 2, and 3 for conditions A, B,
and C (when applicable), respectively (findings with other values were
the same, but are not shown) and adding normally distributed random
noise; (2) create psychophysiological interactions with the seed region
for each condition by forming the PPI terms and multiplying them by a
weighting factor; (3) create task effects by multiplying the predicted
HRF/task regressors by weighting factors; (4) create a seed region term
by multiplying the seed region timecourse from step 1 by a weighting
factor; and (5) sum the psychophysiological interaction terms, along
with the HRF/task responses for each condition, the connectivity with
the seed region, and a constant. The weighting factors can be found in
Tables 1 and 2 and Supplement 1. These values are the gold standard
solution of the PPI models.

The following models were used to evaluate the generated
psychophysiological interactions:

(1) sPPI: PPI for condition A–condition B, task regressor for condition
A–condition B, seed region timecourse, and a constant;

(2a) sPPI+tasks: PPI for condition A–condition B, task regressor for
condition A–condition B, task regressor for condition A, seed
region timecourse, and a constant;

(2b) sPPI+tasks: PPI for condition A–condition B, task regressor for
condition A–condition B, task regressor for condition B, seed
region timecourse, and a constant;

(3) sPPIplus: PPI for condition A–condition B, PPI for condition A+
condition B, task regressor for condition A–condition B, task
Table 2
Accuracy of psychophysiological interaction estimates: 3 conditions, fixation.

Beta weights for simulated data Models

PPIA PPIB PPIC A B C Seed Constant sPPI

a a–1 0 a a–1 0 0.25 100 0.441 (0.500)
a a–1 0.5 a a–1 0.5 0.25 100 0.259 (0.500)
a a–1 a–0.5 a a–1 a–0.5 0.25 100 0.663 (0.500)
0.5 −0.5 0 a a–1 0 0.25 100 0.448 (0.500)
0.5 −0.5 0.5 a a–1 0.5 0.25 100 0.267 (0.500)
0.5 −0.5 0 a a–1 a–0.5 0.25 100 0.455 (0.500)
a a–1 0 0.5 −0.5 0 0.25 100 0.493 (0.500)
a a–1 0.5 0.5 −0.5 0.5 0.25 100 0.311 (0.500)
a a–1 a–0.5 0.5 −0.5 0 0.25 100 0.708 (0.500)
a a 0 a a 0 0.25 100 −0.110 (−0.110)
a a 0.5 a a 0.5 0.25 100 −0.292 (−0.110)
0.5 −0.5 0 a a 0 0.25 100 0.500 (0.500)
0.5 −0.5 0.5 a a 0.5 0.25 100 0.318 (0.500)
a a 0 0.5 −0.5 0 0.25 100 −0.110 (−0.110)
a a 0.5 0.5 −0.5 0.5 0.25 100 −0.292 (−0.110)
a a b 0.5 −0.5 0 0.25 100 −0.083 (−0.110)
a a b 0.5 −0.5 0.5 0.25 100 −0.088 (−0.110)
regressor for condition A+condition B, seed region time-
course, and a constant; and

(4) gPPI2: PPI for condition A, PPI for condition B, task regressor for
condition A, task regressor for condition B, seed region
timecourse, and a constant.
Only the sPPIplus and gPPI2 models span the entire experimen-
tal space and should produce equivalent results. Model 2a and
2b produce identical results and are reported as a single model
in the Results section.
For models with 3 conditions, a task regressor for condition C
was added to models 2a, 2b, 3, and 4. Additionally, the following
model was only evaluated with models with 3 conditions:

(5) gPPI3: PPI for condition A, PPI for condition B, PPI for condition
C, task regressor for condition A, task regressor for condition B,
task regressor for condition C, seed region timecourse, and a
constant.

In the 3 condition models, only gPPI3 spans the entire experimental
space.

All of these models are full rank. Adding the missing task
regressors to sPPI+tasks or sPPIplus models would make them
rank deficient; however, since the contrasts being evaluated do not
involve the task regressor terms, the contrast estimates and results do
not change.

Simulated data: accuracy of interaction estimates
A number of different psychophysiological interactions and re-

lationships of connectivity between different conditions were tested.
Using a number of different psychophysiological interactions allows
sPPI+tasks sPPIplus gPPI2 gPPI3

0.487 (0.500) 0.500 (0.500) 1.000 (1.000) 1.000 (1.000)
0.297 (0.500) 0.313 (0.500) 0.625 (1.000) 1.000 (1.000)
0.719 (0.500) 0.729 (0.500) 1.457 (1.000) 1.000 (1.000)
0.500 (0.500) 0.500 (0.500) 1.000 (1.000) 1.000 (1.000)
0.310 (0.500) 0.313 (0.500) 0.625 (1.000) 1.000 (1.000)
0.500 (0.500) 0.500 (0.500) 1.000 (1.000) 1.000 (1.000)
0.487 (0.500) 0.500 (0.500) 1.000 (1.000) 1.000 (1.000)
0.297 (0.500) 0.313 (0.500) 0.625 (1.000) 1.000 (1.000)
0.719 (0.500) 0.729 (0.500) 1.457 (1.000) 1.000 (1.000)

−0.110 (−0.110) −0.110 (−0.110) −0.220 (−0.220) −0.220 (−0.220)
−0.300 (−0.110) −0.297 (−0.110) −0.595 (−0.220) −0.220 (−0.220)

0.500 (0.500) 0.500 (0.500) 1.000 (1.000) 1.000 (1.000)
0.310 (0.500) 0.313 (0.500) 0.625 (1.000) 1.000 (1.000)

−0.110 (−0.110) −0.110 (−0.110) −0.220 (−0.220) −0.220 (−0.220)
−0.300 (−0.110) −0.297 (−0.110) −0.595 (−0.220) −0.220 (−0.220)
−0.080 (−0.110) −0.081 (−0.110) −0.162 (−0.220) −0.220 (−0.220)
−0.080 (−0.110) −0.081 (−0.110) −0.162 (−0.220) −0.220 (−0.220)
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more general statements to be made about how each model could
perform in PPI studies. The values used were aimed at investigating
two scenerios: (1) the psychophysiological interaction (and task
regressor) estimates of condition A and condition B are symmetric
around 0 (e.g. if PPI for condition A is 1, then PPI for condition B must
be −1) and (2) the interaction (and task regressor) estimates of
condition A and condition B are not symmetric around 0 (e.g. if PPI for
condition A is 1, then PPI for condition B can be any value except −1).
As there is no empirical way to select the weighting factors, we used
random numbers to test a range of interaction values. Simulated data
was generated using the weighing factors in Tables 1 and 2.
Importantly, the simulated data was generated without noise allowing
the interpretation of accuracy to be made against the known
interaction effect, or gold standard. 100 simulated datasets were
generated for each model (Tables 1 and 2).

Simulated data: model fit
The next set of simulations evaluates how well each model fits the

data in the presence of random noise. Additionally, we can test across
seed regions, which would be akin to different subjects as the regions
are independent, whether there is a significant PPI effect using a
random effects between-subjects analysis. With a single group, this
was tested with a one-sample t-test. Of particular interest are
simulations where there is no PPI effect, or difference between the
PPI for condition A and PPI of condition B, as a significant result would
indicate a false positive finding.

For each model, 100 seed region timecourses were generated. For
each seed region, 100 target voxels were created with normally
distributed random noise added to them. The weighting factors for
these models can be found in Supplement 1.

For each seed region, the PPI difference for condition A and
condition B was averaged across the 100 target voxels. These means
were entered into one-sample t-tests.

Empirical data

Participants
Written informed consent was obtained from 74 healthy late

middle-aged individuals (mean age 58.6 years, 20 males) after the
procedures were fully explained. We conducted a recognition memory
study and previously published the task effects (Xu et al., 2009) using a
protocol approved by the University of Wisconsin Human Subjects
Institutional Review Board that is in accordance with the Helsinki
Declaration of 1975. Briefly, participants had to identify previously
viewed (PV) and novel (N) neutral faces that were presented in a
pseudorandom order in an event-related design. The PV faces were
encoded during either a self-referential task (PV(self)) or a semantic
task (PV(sem)). Thus, the study design yielded either 2 or 3 conditions
depending on whether PV faces were collapsed across encoding
condition. A full description of participants, acquisition, and tasks can
be found in Supplement 1.

Implementation of PPI approaches
Both the sPPI and the gPPI approaches were used to evaluate

context-dependent connectivity using a 6 mm radius sphere centered
around the global maximum from the omnibus F-test of the PV>N
contrast images, which was in ventral posterior cingulate cortex (PCC)
at MNI coordinate −8, −62, 26 (Xu et al., 2009). These approaches
were implemented in SPM8 using the automated gPPI toolbox with
SPM.mat files (from SPM5) that produce identical results to those
obtained through the SPM PPI GUI. While the present analysis is done
in SPM8, the scripts are able to use SPM.mat files from both SPM2 and
SPM5.

The sPPI approach had the following regressors: PPI for PV(self)+
PPI for PV(sem)−PPI for N, task regressor for PV(self)+task regressor
for PV(sem)−task regressor for N, seed region timecourse, and a
constant. This only allows testing of PV>N.

The gPPI approach for 2 conditions (gPPI2) had the following
regressors: PPI for PV(self)+PPI for PV(sem), PPI for N, task regressor
for PV(self)+task regressor for PV(sem), task regressor for N, seed
region timecourse, and a constant. This allows testing of PV>N, PV,
and N.

The gPPI approach for three conditions (gPPI3) had the following
regressors: PPI for PV(self), PPI for PV(sem), PPI for N, task regressor
for PV(self), task regressor for PV(sem), task regressor for N, seed
region timecourse, and a constant. This allows the testing of any
combination of PV(self), PV(sem) and N conditions.

Model comparisons with Akaike information criterion

The Akaike information criterion (AIC) finds the best model from a
given set of models that explains the data with a minimum number of
parameters by penalizing the addition of terms that do not
substantially lower the error of the model. Thus, AIC was used to
operationally define which model (e.g. sPPI or gPPI2) provided a
relative best fit of the data — with largest negative magnitude
corresponding to best model fit to the data (Lindsey and Jones, 1998;
Ludden et al., 1994). For each subject and method, the AIC was
computed (Akaike, 1974) for each voxel and then compared using
paired t-tests. In the context of SPM8, the following equation was
used

AIC ¼ 2kþ n log
RSS
n

� �� �
ð3Þ

where k is the number of regressors in the model, n is the number of
time points, and RSS (residual sum of squares) is the degrees of
freedom times the ResMS image from the model estimation process.
This equation assumes that the residuals are normally distributed and
have constant variance; it has previously been used in fMRI studies
(den Dekker et al., 2009; Habeck et al., 2006).

In addition to testing whether the AIC was significantly lower
between models, we also report the mean AIC decrease with gPPI2
compared to sPPI. A decrease of 10 can be interpreted as no evidence
for choosing sPPI and has a probability of 0.67% that information is
not lost in the sPPI model. A decrease between 4 and 7 can be
interpreted as a little evidence for considering sPPI with a probability
of between 13.53 and 3.02% that information is not lost in the sPPI
model, respectively. A decrease of 1 or 2 provides substantial
evidence for considering sPPI with a probability between 60.65 and
36.79% that no information is lost with the sPPI model (Burnham and
Anderson, 2002).

Finally, we report the number of voxels that have at least a 1, 2, 4,
5, 7, or 10 unit decrease in AIC from sPPI to gPPI2 in at least 10, 20, 30,
40, 50, 60, or 70 subjects as a further gauge of the amount of
improvement in gPPI2 (Table S6).

Results

Simulated data: accuracy of interaction estimates

Table 1 provides the psychophysiological interaction estimates
from 4 different PPI models. In summary, whenever the psychophys-
iological interaction (and task regressor) estimates of condition A and
condition B are symmetric around 0 (e.g. if PPI for condition A is 1, then
PPI for condition B must be −1), then the estimates of the interaction
are the same between sPPI and gPPI (after accounting for the fact that
sPPI produces values half of gPPI due to the regressor amplitudes). Any
variation from this leads to a deviation from the expected value and
can result in interaction values that can either be higher (potentially
false positives) or lower (potentially false negatives) than the expected
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value. This requirement can be relaxed to only include the interaction
term if the task regressors span the space of all tasks (all models except
sPPI). The sPPIplus and gPPI2 estimates are always as expected. These
results suggest that any experiment with at least 2 conditions that are
modeled needs to use the gPPI framework or another model that spans
the experimental space (e.g. sPPIplus) even if there are no fixation
periods.

Table 2 provides the psychophysiological interaction estimates
from 5 different PPI models. A similar pattern is found as with the 2
condition data. In summary, whenever the psychophysiological
interaction (and task regressor) estimates of condition A and
condition B are symmetric around 0 (e.g. if PPI for condition A is 1,
then PPI for condition B must be−1) and condition C interaction and
task regressor are 0, then the estimates of the interaction are the
same for all models (after accounting for the fact that sPPI produces
values half of gPPI due to the regressor amplitudes). Any variation
from this leads to a deviation from the expected value and can result
in interaction values that can either be higher (potentially false
positives) or lower (potentially false negatives) than the expected
value. If task regressors span the space of all tasks (all models except
sPPI), then the requirements only apply to the PPI terms. If the PPI for
condition C is not 0, then only gPPI3 can accurately estimate the PPI
effect. Setting the PPI for condition C to a normally distributed
random number allows the investigation of the correlation between
the PPI A–PPI B and the value of PPI C. This correlation was 1,
indicating that error in the model is related to the strength of the
non-modeled PPI terms.
Simulated data: robustness of gPPI estimates and model fits

Estimated psychophysiological interaction magnitudes for each
model, along with the standard error across seed regions, are
presented in Table 3 for simulated data with 2 conditions. Based on
the simulated data, the expected value of the interaction of condition
A and B is from the sPPIplusmodel, with the exception of gPPI2, which
is twice this value due to the amplitude of the regressors in the model
for data with 2 conditions. Only models that span the entire space
have values that match the expected values. When the PPI interaction
effect is this great, all models were able to detect it; while smaller PPI
differences were not detected (data not shown). However, in the
absence of a PPI effect, the sPPI model detected an effect (e.g. false
positive). The results of the model fits for this simulated data can be
found in Table S1. gPPI2 usually had the greatest reduction in AIC and
the reduction was at least 9, indicating very little evidence for
choosing the sPPI model. Thus, sPPI potentially poorly estimates the
interaction effect and poorly fits the data compared to gPPI2. sPPIplus
and gPPI are statistically identical because they both span the same
experimental space and, as such, any model that spans the entire
experimental space will be identical to gPPI.
Table 3
Robustness of PPI estimates and significance: 2 conditions.

Model parameters Models

sPPI

PPI effect
1 Condition plus fixation 0.99 (0.01)
2 Conditions (A–B) 0.49 (0.01)
2 Conditions (effectively the same as 2 conditions (A–B)) 0.49 (0.01)
2 Conditions 0.88 (0.02)
2 Conditions plus fixation 0.71 (0.03)

No PPI effect
2 Conditions plus fixation 0.15 (0.01)

Values are the mean and standard errors across seed voxels. For PPI effect models, bold valu
values indicate tests that were significant for A–B≠0 at pb0.05.
Estimated psychophysiological interaction magnitudes for each
model, along with the standard error across seed regions, are
presented in Table 4 for simulated data with 3 conditions. Based on
the simulated data, the expected value of the interaction of condition
A and B is half the estimate from the gPPI3 model, except for gPPI2
where it is the same. Only models that span the entire space have
values that match the expected values. With a smaller PPI effect, only
gPPI3 consistently detects the effect based on one-sample t-tests.
That is, if the PPI effect is large enough, all models will detect it (data
not shown); whereas more subtle PPI differences will only be
detected with gPPI as shown here. Anytime the PPI for condition C
was non-zero, the PPI effect was not detected (e.g. false negative) at
this magnitude of difference between PPI for condition A and
condition B. Additionally, in the absence of PPI for condition A and
condition B being different, all models except gPPI3 detected an effect
in at least one of the data simulations, which indicate that these
models can potentially produce false positives. When the PPI for
condition C was set to 0, only sPPI falsely detected a PPI effect, due to
the design not spanning the entire task regressor space of 3
conditions. The results of the model fits for this simulated data can
be found in Table S2. Models that span more of the experimental
space had better model fits (larger decreases in AIC). Whenever the
PPI for condition C was non-zero, then gPPI3 had the largest reduction
in AIC and best model fit. The decreases for gPPI3 were always greater
than 10 indicating very little evidence for choosing the sPPI model.
Additionally, the decreases were more than 10 over that for models
that spanned less than the entire experimental space depending on
the value of the non-modeled PPI term indicating very little evidence
for those models. Thus, models that do not span the entire
experimental space potentially poorly estimate the interaction effect
and poorly fit the data, potentially leading to both false negatives and
false positives.
Empirical data: psychophysiological interactions

The sPPI approach revealed 14 clusters at a pb0.01 in at least 50
edge-connected voxels showing greater connectivity to PV faces
compared to N faces (Table S3, Figure S1, first row). The liberal
threshold of pb0.01 uncorrected at the voxel level was chosen to
illustrate the differences between approaches. No clusters were found
for the opposite contrast. In gPPI2, there were ten significant clusters
for the PV>N contrast (Table S4, Figure S1, middle row). The
opposite contrast did not reveal any clusters. In gPPI3, there were 11
significant clusters for the PV>N contrast (Table S5, Figure S1,
bottom row). Five clusters in sPPI did not have matching clusters in
either gPPI approach. Several other clusters had minimal overlap with
clusters in gPPI2 and gPPI3. One cluster in gPPI2 was not found in
either sPPI or gPPI3. Two clusters were only found in gPPI3. The
similarities between gPPI2 and gPPI3 suggest that the semantic and
sPPI+tasks sPPIplus gPPI2 Single condition

0.99 (0.01) 0.99 (0.01) 0.99 (0.01) 0.99 (0.01)
0.49 (0.01) 0.49 (0.01) 0.98 (0.02) 0.40 (0.01)
0.49 (0.01) 0.49 (0.01) 0.98 (0.02) 0.40 (0.01)
0.88 (0.02) 0.49 (0.01) 0.98 (0.02) 1.00 (0.01)
0.58 (0.03) 0.51 (0.01) 1.02 (0.01) 1.91 (0.01)

0.01 (0.01) 0.01 (0.01) 0.02 (0.1) 0.06 (0.01)

es indicate tests that were significant for A>B at pb0.05. For No PPI effect models, bold



Table 4
Robustness of PPI estimates and significance: 3 conditions, fixation.

Model parameters Models

sPPI sPPI+tasks sPPIplus gPPI2 gPPI3

PPI effect
PPIA=1; PPIB=0.75; PPIC=0 0.15 (0.02) 0.12 (0.02) 0.12 (0.01) 0.24 (0.01) 0.25 (0.01)
PPIA=1; PPIB=0.75; PPIC=0.5 −0.02 (0.02) −0.06 (0.02) −0.06 (0.01) −0.12 (0.02) 0.25 (0.01)
PPIA=0.125; PPIB=−0.125; PPIC=0 0.15 (0.01) 0.12 (0.01) 0.12 (0.01) 0.24 (0.01) 0.25 (0.01)
PPIA=0.125; PPIB=0.125; PPIC=0.5 −0.03 (0.01) −0.06 (0.01) −0.06 (0.01) −0.13 (0.02) 0.25 (0.01)

No PPI effect
PPIA=0; PPIB=0; PPIC=0 0.02 (0.01) −0.01 (0.01) −0.01 (0.01) −0.01 (0.01) 0.00 (0.01)
PPIA=0; PPIB=0; PPIC=0.5 −0.16 (0.01) −0.19 (0.01) −0.19 (0.01) −0.38 (0.02) 0.00 (0.01)
PPIA=0; PPIB=0; PPIC=−0.5 0.20 (0.01) 0.18 (0.01) 0.18 (0.01) 0.35 (0.01) 0.00 (0.01)

Values are the mean and standard errors across seed voxels. For PPI effect models, bold values indicate tests that were significant for A>B at pb0.05. For No PPI effect models, bold
values indicate tests that were significant for A–B≠0 at pb0.05.
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self-referential encoding conditions result in similar connectivity
during recognition to these areas.

The observation that different approaches have different clusters
does not imply that the interaction estimates between the three
models are significantly different nor do we claim the values are
different between models at the cluster level (Nieuwenhuis et al.,
2011); however, since the goal is to identify which method is optimal
at detecting psychophysiological interactions, their difference need
not be significant.

Empirical data: model fit using the Akaike information criterion (AIC)

Comparison of AIC values between models revealed 1701 voxels
where the AIC was significantly lower at a family-wise error corrected
p-value of 0.05 in at least 20 contiguous voxels, within a mask of 3945
voxels formed by the logical OR of the sPPI and gPPI2 results (Fig. 2,
top row), when using gPPI2 compared to using sPPI (Fig. 2, third
row). Areas that had significantly better model fits were primarily
located in the supplementary motor area and posterior cortical areas,
including the visual cortex. Using a more liberal threshold of pb0.01
in at least 50 contiguous voxels revealed a significant difference in
Fig. 2. Comparison on sPPI and gPPI approaches using the Akaike information criterion (AIC)
sPPI or gPPI revealed significant interaction effect for PV>N at pb .01 in at least 50 contigu
clusters of decreased AIC values within the mask at threshold of a family-wise error correcte
with a decrease of at least 7 in the AIC from sPPI to gPPI2.
2501 voxels. No significant increases in AIC were found when
comparing the gPPI2 to sPPI at either threshold. The extensive nature
of improved model fits suggests that gPPI2 better represents the data.

Next we investigated the mean change in AIC for each cluster in
each model (sPPI compared to gPPI2 and gPPI3) and report them in
Tables S3–5. The mean AIC change in the voxels from the logical OR of
the sPPI and gPPI2 is shown in Fig. 2 (second row). In general, the
larger the decrease in AIC in sPPI regions, the more likely the region
would not be found with gPPI (potential false positives in sPPI). In the
gPPI models, the larger the decrease from sPPI, the more likely the
region was not found in sPPI (potential false negatives in sPPI).

An alternative way to look at AIC is to investigate the number of
subjects that had a specified decrease at each voxel. The results are
shown in Fig. 2 (bottom row) for a decrease of 7 and Table S6 for
decreases of 1, 2, 4, 5, 7, and 10. At a decrease of 7, a decrease that
provides little evidence in support of choosing sPPI, there were 1737
out of 3945 voxels that had at least 30 of the 74 subjects with a
decrease of at least this amount. At a decrease of 4, there were 2102
out of 3945 voxels that had at least 30 of the 74 subjects with a
decrease of at least this amount. While not every subject has a
significantly better model fit, a substantial number of participants
on the PALS cortical surface (Van Essen, 2005). Top row: mask of regions where either
ous voxels. Second row: the mean AIC change from sPPI to gPPI. Third row: significant
d p-value of 0.05 in at least 20 contiguous voxels. Bottom row: the number of subjects

image of Fig.�2


Table 5
Analysis of model fit and PPI effects.

Peak voxel Models

Measure sPPI gPPI2 gPPI3

18, 56, 6 Contrast 0.27 0.30 0.25
t-statistic 3.44 3.81 2.82
AIC change −1.06 2.31a

40, −56, −20 Contrast 0.38 0.10a 0.22a

t-statistic 2.94 0.26 1.62
AIC change −61.9a −59.4a

AIC, Akaike information criterion; contrast estimates from sPPI were multiplied by 2 to
scale them to be the same as gPPI.

a Significantly different from SPM PPI Protocol using a paired t-test at pb0.05 (one-
tailed).
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have better model fits at the same location providing further evidence
that gPPI is potentially better than sPPI.

Next we evaluated the relationship of PPI estimates and model fit.
We extracted the mean contrast value (estimate of the interaction
magnitude), mean AIC from 6 mm spheres around two peaks from sPPI
approach, and computed the t-statistics for the spheres (Table 5). The
first peak selected was common to all three methods and was located
in the right superior frontal gyrus at (18, 56, 6). The PV>N contrast
values, after adjusting for the amplitude of the regressors, were not
significantly different between the three models. Additionally, there
was not a significant decrease in AIC values either. This suggests that
the gPPI approaches and the sPPI approach are equivalent at this
location. Next, we selected a peak that was found only in the sPPI
results located in the right fusiform gyrus at (40, −56, −20) as an
example of a potential false positive finding with sPPI. The contrast
values were significantly lower for the gPPI2 and gPPI3 models using
pair-wise t-tests. The AIC values were significantly lower indicating a
better model fit with gPPI and the regional t-statistics did not indicate
the contrast values were different than 0. Based on the model fit, this
region is potentially a false positive in sPPI. However, since there is no
gold standard with real data, we cannot know if this is absolutely a
false positive or if the model could be further improved to detect a real
effect.

Flexibility of the generalized form of context-dependent psychophysiological
interactions

An important element to the use of gPPI is its flexibility. In the case
of three conditions, there are at least four psychological states in the
Fig. 3. Conjunction maps for the PV conditions and for all conditions projected onto the PA
each thresholded at FWE-corrected pb0.01 in at least 50 contiguous voxels. Second row: log
least 50 contiguous voxels.
task described above (e.g. N, PV(self), PV(sem), when no face is being
presented), which results in eight possible contrasts between condi-
tions in the study (NvPV, NvPV(self), NvPV(sem), PV(self)vPV(sem),
NvNone/Fixation, PVvNone/Fixation, PV(self)vNone/Fixation, and
PV(sem)vNone/Fixation). Using the sPPI approach requires eight
separate models, each potentially having a suboptimal model fit,
thereby increasing the possibility of false positives and negatives, while
the gPPI approach requires only a single model that is a better fit to the
data. Additionally, an estimate of PPI for each condition enables the
comparison between conditions using contrasts within a single model.
For example, single subject contrast maps for a specific comparison
may be computed and be used as input into a second-level one-sample
t-test (e.g. PV>N, Figure S2). Estimates of PPI for each condition may
also be directly tested using second-level paired t-tests or repeated-
measure analysis of variances. Importantly, neither of these approaches
requires new general linear models at the single subject level.

In creating estimates of PPI for each condition relative to baseline,
conjunction maps can also be formed for different combinations of
tasks to investigate similarities in connectivity. In Fig. 3, we illustrate
the conjunction, using a logical OR of PVself and PVsem maps each
thresholded at FWE-corrected pb0.001 in at least 50 voxels. The
maps show a number of regions that overlap including parts of the
default-mode network. However, there are also qualitative differ-
ences between two conditions. We also illustrate the conjunction
between PVself, PVsem, and N conditions using the same threshold
(Fig. 3 bottom).

Discussion

Psychophysiological interaction analyses not only provide infor-
mation about functional integration of the brain, but also elucidate
the psychological or behavioral significance of such integration
(Friston et al., 1997). Given the importance of such information
regarding brain–behavior relationships, it is critical that PPI analysis
methods properly model the experimental space and effects
(Gitelman et al., 2003; Kim and Horwitz, 2008). We have presented
data indicating that utilizing the generalized form of context-
dependent PPI (gPPI) potentially reduces both false negatives and
false positives, especially in experiments involving more than two
conditions, using both simulated and real data.

Flexibility of statistical modeling is important in PPI methods
given that many fMRI tasks incorporate more than two conditions to
be contrasted. The gPPI approach improves experimenter flexibility in
a number of ways. First, researchers can explore connectivity in
individual conditions within their experiment. Second, researchers
LS cortical surface (Van Essen, 2005). First row: logical OR between PVself and PVsem
ical OR between PVself, PVsem, and N each thresholded at FEW-corrected pb0.01 in at

image of Fig.�3
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can explore the conjunction of connectivity across conditions. Finally,
researchers do not need a separate model for comparisons of different
interactions; rather a single model would allow for multiple contrasts
that test the several possible interactions.While the example presented
here only tested the effect of the gPPI approach on an event-related
experiment, there is no reason to expect the conclusions to be different
with a block design with more than two psychological states.

An ideal statistical estimate accurately models truly-existing
patterns in population data. As one method of estimating the
accuracy of the gPPI analysis methods, we compared the model fit
(at the single subject level) of gPPI to sPPI methods. When we did a
formal statistical comparison of the model-to-data fit of the sPPI
versus gPPI (using AIC criterion), we found that the gPPI approach
improved model fit compared to sPPI.

The accuracy of statistical methods also relies on the validity of the
assumptions made by models used. Standard PPI methods in SPM8
assume that regional connectivity across conditions varies symmetri-
cally around 0 (see Simulated data: accuracy of interaction estimates
section). This assumption does not affect context-dependent connec-
tivity analyses of a task involving only two conditions, but this
assumption would affect interpretation of PPI analysis of an fMRI task
with more than two conditions (even if the third condition is a fixation
cross “baseline”). Importantly, this assumption made by the standard
SPM PPI method is not made in the gPPI approach introduced here. The
gPPI approach spans all possible neurophsyiological relationships, thus
does not make any assumptions of their inter-relationships between
experimental conditions. The sPPIplus model, with PPI terms for A–B
and for A+B, also spans the entire experimental space in the case of
two conditions and baseline. This model produces the same results as
gPPI under these circumstances. In sum, as long as the model spans the
entire experimental space then the model will achieve a better fit.

We also provide evidence that gPPI may be more sensitive to true
positive results than standard methods. Statistical comparison of
results of gPPI versus sPPI methods showed several regions of
context-dependent connectivity when only using gPPI methods.
This result taken with evidence of improved model fit (according to
AIC criterion) using gPPI suggests that this method may have greater
sensitivity than standard methods. However, this interpretation is
tempered by the lack of a true gold standard to which we can compare
both methods. Despite the lack of a gold standard, the simulations
support the conclusion that gPPI reduces the risk of false negatives.

While we have demonstrated several advantages of using gPPI over
sPPI, there are still a number of caveats that need to be consideredwhen
interpreting the results. First, the results are only as good as the model
and the design of the fMRI task being used. The failure to accurately
model the neural state of the brain can lead to incorrect results
(Visscher et al., 2003).With respect to PPI, it is critical tomodel all of the
conditions independently. It is also important to keep in mind that all
methodological concerns that influence the interpretation of fMRI
studies also influence the interpretation of PPI results (e.g., choice of
baseline condition; neurovascular coupling assumptions etc.). Thus,
limits on interpretation of an fMRI task also limitmore involved analysis
of that same task. Second, the canonical hemodynamic response
function used in the deconvolution step of PPI is assumed to be
constant across voxels and individuals (Gitelman et al., 2003). As of yet,
the choice of model for the deconvolution has not been investigated,
despite different hemodynamic response functions being used in
activation studies (Boynton et al., 1996). Future research should
investigate the effect of different hemodynamic response functions,
especially as PPI analysis methods are applied to patient populations
that could have variable hemodynamic response due to changes in
neurovascular coupling. Thirdly, psychophysiological analyses still
require a sufficient number of trials and/or blocks. Based on the existing
literature, at least 30 trials per condition should be used (Huettel and
McCarthy, 2001). For example, the significance of either PV(sem) or
PV(self) is potentially less than PV because the estimates are less
reliable within each individual leading to greater variation between
individuals. Finally, it is important to note that in SPM, the interaction is
specific to the duration of events that were modeled at the first level.
Despite these caveats, psychophysiological interactions have been
demonstrated to have a physiological basis (Kim and Horwitz, 2008).

Conclusions

PPI analyses assess how the activity within brain networks is
modulated by psychological states. The present study provides the
theoretical framework for the generalized form of context-dependent
PPI that enables the investigation of the brain's functional integration
and the psychological or behavioral significance of such integration.
Importantly, we have presented evidence – comparing gPPI to the
standard SPM PPI method using both simulated data and an empirical
fMRI dataset – that the generalized form of context-dependent PPI
approach spans the entire experimental space and that this approach
may improve single-subject model-fit, specificity for true negatives,
and sensitivity to true positive findings. Finally, gPPI is readily
accessible through the automated gPPI toolbox.

Supplementary data to this article can be found online at doi:10.
1016/j.neuroimage.2012.03.068.
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