
Tools of the trade: psychophysiological interactions
and functional connectivity
Jill X. O’Reilly,1 Mark W. Woolrich,1,2 Timothy E.J. Behrens,1,3 Stephen M. Smith,1 and Heidi Johansen-Berg1

1FMRIB Centre, Department of Clinical Neurosciences, Oxford University, John Radcliffe Hospital, Oxford, OX3 9DU, 2Oxford Centre for Human

Brain Activity (OHBA), Department of Psychiatry, Oxford University, Warneford Hospital, Oxford, OX3 7JX and 3Wellcome Trust Centre for

Neuroimaging, University College London, Wellcome Trust Centre for Neuroimaging, 12 Queen Square, London, WC1N 3BG, UK

Psychophysiological interactions (PPIs) analysis is a method for investigating task-specific changes in the relationship between activity in different brain
areas, using functional magnetic resonance imaging (fMRI) data. Specifically, PPI analyses identify voxels in which activity is more related to activity in a
seed region of interest (seed ROI) in a given psychological context, such as during attention or in the presence of emotive stimuli. In this tutorial, we aim
to give a simple conceptual explanation of how PPI analysis works, in order to assist readers in planning and interpreting their own PPI experiments.

Keywords: psychophysiological interactions; PPI; functional connectivity; resting state

Typically, in an fMRI experiment, researchers are interested in the

activity of individual brain areas�for example which brain areas

increase their activity during a behavioural task. Yet a major strength

of functional imaging as a method is that it allows researchers to ob-

serve activity in networks of areas simultaneously and therefore as well

as investigating functional localization (which areas are active during a

task) it is possible to use functional imaging to probe functional inter-

actions between brain areas. Using functional imaging data, researchers

can investigate not only which individual brain areas are involved in a

task, but also how information flows between brain areas (Stephan,

2004; Friston, 2011; Smith et al., 2012) and how functional areas can

change their connectivity to participate in different networks at differ-

ent times (Smith et al., 2012), or under different behavioural circum-

stances (Cacioppo and Decety, 2011).

This tutorial concerns one particular type of functional connectivity

analysis (arguable the most popular technique in the literature at pre-

sent): psychophysiological interactions (PPI) analysis. PPIs analysis

concerns task-specific increases in the relationship between different

brain areas’ activity (Friston et al., 1997). PPI is a measure of what is

generally referred to as functional connectivity�a statistical depend-

ence between activity in between brain areas. Functional connectivity

analysis in general may concern relationships between brain regions in

any context, including when the brain is at rest (Biswal et al., 1995);

other techniques for functional connectivity analysis include Dynamic

Causal Modelling [DCM (Friston et al., 2003)], independent compo-

nents analysis [ICA (Hyvarinen, 1999)] and Granger causality

(Granger, 1969). Readers should be aware that each method aims to

extract different types of connectivity information from the data and

hence results from these different techniques are not equivalent; it is

necessary to choose a technique which is effective for the particular

experimental question and data type.

PPI is concerned with task-dependent functional connectivity ana-

lysis: the purpose of a PPI analysis is to determine which voxels in the

brain increase their relationship with a seed region of interest in a given

context, such as during a particular behavioural task. In other words, a

PPI aims to identify regions whose activity depends on an interaction

between psychological factors (the task) and physiological factors (the

time course of a region of interest). A task-specific increase in the

relationship between brain regions (a PPI effect) is suggestive of a

task-specific increase in the exchange of information.

PPI analysis was originally proposed by Friston and colleagues in

1997, and has become more commonly used in recent years, perhaps as

neuroscientists increasingly think about the brain in terms of networks

and interactions between brain regions (Bullmore and Sporns, 2009;

Deco et al., 2011; Friston, 2011). PPI analysis can be implemented

using any fMRI analysis package, and is particularly straightforward

to carry out with SPM (http://www.fil.ion.ucl.ac.uk/spm/) FSL (http://

www.fmrib.ox.ac.uk/fsl/), or AFNI (http://afni.nimh.nih.gov/sscc/

gangc/CD-CorrAna.html) as these packages have PPI functions built

into their graphical user interfaces.

In this tutorial, we provide a beginner’s guide to PPI in three

parts. First, we explain the circumstances in which a PPI analysis

might be used. Secondly, we explain conceptually how PPI ana-

lysis is implemented. Third, we discuss the interpretation of PPI

results, including some comparison with resting-state functional

connectivity analysis.

WHAT IS PPI FOR? A HYPOTHETICAL EXAMPLE1

Imagine we had conducted an experiment in which participants navi-

gated a route through a virtual reality maze, and this navigation con-

dition was contrasted with a control condition in which the

participants travelled passively through a similar maze. Now imagine

when we analyse the data, we find that the prefrontal cortex and hippo-

campus were both more active during the navigation condition than

during the passive control condition.

Faced with these results, we might come up with (at least) two

possible interpretations: (i) the prefrontal cortex and hippocampus

were both independently active in the navigation condition (say,

because navigation requires planning, which involves the prefrontal

cortex and because navigation requires spatial information, which is

stored in the hippocampus). (ii) The prefrontal cortex and hippocam-

pus work together interactively in navigation�perhaps some
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‘top–down’ signal from the prefrontal cortex causes retrieval of infor-

mation in the hippocampus, which is then passed back to the pre-

frontal cortex.

If the two active areas (hippocampus and prefrontal cortex) interact

during navigation, we might reasonably expect their activity to be

more strongly related during navigation than during the passive

travel control. This is where PPI analysis is useful: for a given ‘seed’

region of interest, such as the hippocampus in this case, PPI analysis

essentially tells us which voxels, across the whole brain, increase their

relationship with (strength of regression on) that seed region during

the task of interest. In the maze navigation task, we could use PPI to

help distinguish between the two hypotheses above by asking which

areas increased their relationship with the hippocampus during navi-

gation as opposed to passive travel.

Incidentally, we should be clear from the outset that a standard PPI

analysis does not make inferences about the direction of information

flow, i.e. causality. PPI detects task-specific increases in the relationship

between a seed region of interest and the rest of the brain, measured in

terms of the strength of regression of activity in one region on another.

However, there is no implication that the seed region is the driver

rather than the driven area, or whether the connection is direct,

rather than mediated by other areas.

HOW DOES A PPI ANALYSIS WORK?

In this section of the tutorial, we build up a strategy for analysing

functional connectivity, as this is normally done in PPI analysis.

Identifying functionally connected brain regions

How do we go about looking for areas that interact with a brain area of

interest, such the hippocampus in our maze experiment? The first

principle underlying PPI is that if two areas are interacting, the level

of activity in those areas will correlate over time�in other words, if

activity in the two areas increases and decreases ‘in synch’ this suggests

that activity in one area may be driven by activity in the other (al-

though the direction of causality is unknown, as mentioned above).

This relationship can be captured by performing a linear regression in

which activity in the seed region is used to explain activity in other

voxels across the brain.

The basic strategy for identifying a (non-task dependent, at this

stage) relationship between a region of interest and the rest of the

brain is as follows:

(a) define a mask at your ‘seed’ region of interest (the hippo-

campus)�see Figure 1 for some comments about defining seed

masks.

(b) extract a representative time course of activity from that mask.

This time course will be a vector containing a single value (e.g. the

mean activity in the mask) for each time point (volume) in your

fMRI data set. In FSL, the seed ROI time course is obtained using a

command line tool called fslmeants; in SPM, there is a graphical

interface for defining the region of interest, and time course

extraction is then done automatically.

(c) Having obtained a time course representing activity in the seed

ROI, enter this time course as a regressor into a GLM analysis

(a GLM or general linear model analysis is simply a ‘normal’ SPM

or FEAT analysis, in which the regressors or explanatory variables

typically represent blocks of a task). As with any GLM analysis,

this will identify voxels where there is a significant effect such that

activity is explained by a regressor or ‘explanatory variable’ (in this

case, the seed ROI time course). The voxels that show a significant

effect for the seed ROI time course are the ones that vary their

activity ‘in synch’ with the hippocampus.

Task-dependent effects

Using the analysis described so far, we would identify those voxels that

correlate with the seed ROI in general. Indeed, identifying correlated

voxels in this way is similar to the typical ‘seed based’ approaches for

the analysis of resting-state functional connectivity. However, in PPI

analysis we are interested in task-specific changes in the relationship

between brain areas in functional connectivity. In other words, we are

interested in the moderator effect of task context on interactions

between brain regions (Baron and Kenny, 1986). Therefore a further

manipulation is required.

Psychophysiological interactions

The aim of a PPI analysis is to identify task- or context-specific changes

in the relationship between brain areas (or functional connectivity): for

example, if two areas interact more in the context of a certain psycho-

logical task, activity in one areas should regress more strongly on

activity in the other area during task blocks compared to during a

control task or rest.

Consider the maze example again and imagine that when people

navigate actively around the maze the hippocampus and the prefrontal

cortex interact. In contrast, in the passive travel condition these two

regions do not interact. Then we would expect the relationship

between the two regions to be higher during the navigation condition

than during the passive travel condition. In a psychophysiological

interactions analysis, we particularly look for areas that have a stronger

relationship with the seed ROI time course in one psychological con-

text (e.g. task block) than another.

How do we identify task specific changes in functional connectivity?

Instead of using the time course of the seed region in the GLM, we

generate an ‘interaction regressor’ and use this instead. Generally

speaking, the interaction (PPI) regressor will be the element-by-

element product of the (mean-centred) task time course and the

(demeaned) seed ROI time course (Figure 2). Voxels in which this

PPI regressor is a good description of activity are those in which the

seed region’s time course has a stronger relationship during the con-

dition of interest (navigation) than it does during other conditions

(passive travel).

It is possible to look at PPI effects for one seed region and multiple

tasks, or multiple seed regions and one task, by creating multiple PPI

regressors. Probably the simplest way to do this would be to create a

PPI regressor for each task/seed region combination of interest, and set

up the contrasts between these in the individual subjects’ ana-

lyses�then pass the results of these contrasts to a group-level analysis

as one would for any group-level inference.

In contrast, if we consider simple correlations some brain regions

will have a similar time course of activity to the seed region for reasons

that are nothing to do with the experiment per se. For example, regions

that are anatomically connected have correlated activity even during

the resting state (Greicius et al., 2009; Honey et al., 2009). Regions that

share neuro-modulatory influences or have common sensory input will

all have correlated time courses regardless of what experiment you are

doing. In contrast, in PPI we are only interested in relationships that

change due to some manipulation we applied, for example, areas which

interact during navigation but not during passive travel. Non-task

specific, baseline interactions between brain areas (functional connect-

ivity) should remain constant across conditions.

Co-variates of no interest

In PPI analysis, we are specifically looking for a change in functional

connectivity due to a manipulation we ourselves have introduced (such

as the psychological task). We therefore need to rule out a number of
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non-task-related explanations for the changes in the relationship

between brain areas.

Following the approach described so far, we would have a GLM in

which the regressor or explanatory variable is the interaction (PPI)

term described above. This analysis tells us which regions are more

correlated with the seed region during the task of interest than at other

times, but there is a problem: because we generated the interaction

term as the product of a task regressor and a seed ROI time course,

regions in which there is an effect of task, or which are correlated with

the seed ROI regardless of task, may also show up as being related to

the interaction term.

To spell this out: we selected the (seed) region of interest on the

basis that it was active in a certain contrast (in our example, navigation

vs passive travel), and therefore we are pretty much certain to see a

relationship with all the other areas that were active in that contrast in

our original GLM analysis (because these also increase their activity

during the navigation blocks). In other words, we will observe effects

that are driven by a shared task input, which we knew before we even

started the PPI analysis. Furthermore, voxels that have a similar time

course to the seed region, even if this is not task related, will have a

positive relationship with the interaction term�as described above, any

voxels with anatomical connections to the seed region, or shared sub-

cortical input, could show a non-task-specific effect.

To account for these confounds, we must include in our model the

psychological and physiological time courses from which we derived

the interaction term, as co-variates of no interest. We would therefore

include all three time courses displayed in Figure 2c. This means that

variance explained by the interaction term is only that over and above

what is explained by the main effects of task and physiological correl-

ation. This is the final PPI model.

Additional regressors

The co-variates of no interest described above (the task- and seed ROI

regressors used to generate the PPI) should always be included to

‘model out’ baseline correlations. However, it is also advisable to in-

clude regressors that model any other known variance in your data,

even if this is not correlated with the PPI. In any general linear model

analysis, including PPI, the better your model describes your data, the

lower the error variance�this makes the analysis more sensitive overall.

Therefore, it is advisable to include regressors representing other task

conditions, button presses, eye movements, errors, etc if you would

normally include these in a model of your task for a typical (main

effects) analysis.

Between-sessions PPI

In some fMRI designs, the effect of interest is not the effect of a task on

brain activity, but the difference in size of that effect between two

experimental sessions or two groups of participants. Say for example

that in fMRI session 1, we get a group of participants to navigate

around a maze they have never seen before. Then we take them out

Fig. 2 Generating a PPI regressor. (a) We start with a regressor representing the main effect of task (in this case, a block design) (dashed line), and convolve it with the HRF to get an HRF convolved task
regressor (black line). The horizontal grey line is zero. (b) We extract a time course from our seed region of interest (blue line). If this region of interest was active during the task, the time course of activity
from the seed region will be correlated with the HRF convolved task regressor. (c) We generate a PPI regressor (red line) as an element-by-element product of the HRF convolved task (black line) and seed ROI
(blue line) regressors. Note that the PPI regressor is correlated with the seed region time course during task blocks, but anti-correlated with it during rest blocks. Consequently, voxels that are always correlated
with the seed ROI (e.g. due to anatomical connections that are not task-relevant) will have an overall regression co-efficient of zero for the PPI regressor, but voxels which are more correlated with the seed ROI
during task blocks than during rest will show a positive correlation with the PPI regressor.

Fig. 1 Defining the seed region of interest. PPI analysis investigates task-dependent relationships
with activity in a seed mask. This seed mask may be defined in several ways. (a) A common
approach is to select the voxels with the strongest task effect in a group analysis (e.g. the voxels
most active during navigation). (b) Alternatively the mask may be defined anatomically, if there is a
strong hypothesis about a particular anatomical region, and that region can be easily delineated on
an anatomical scan (here we have selected the entire putamen). (c) We may define the region of
interest individually for each participant. First we constrain our search to a volume of interest (here
we use our anatomical putamen mask, but we could equally use a mask based on a group fMRI
analysis). Then we select the voxels in each participant with the strongest task effect. This allows for
inter-individual differences in functional anatomy and is probably the most sensitive approach. Note
that in cases ‘a’ and ‘c’, we are selecting an ROI based on the results of our analysis. However, we
need not be concerned about circularity in this case, because as long as we model the main effect of
task when we run the PPI analysis, the PPI will only detect functional connectivity effects over and
above (orthogonal to) the main effect of task.
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of the scanner and let them practice with the maze for a couple of

hours. In fMRI session 2, they navigate around the maze again, but

now the maze is familiar. We want to know whether there is a different

spatial pattern of functional connectivity with the hippocampus before

and after familiarization.

In this case, we have two slightly different options for PPI analysis

depending on the question we want to ask.

(a) If we only want to know which areas have greater functional con-

nectivity with the hippocampus after the maze training, we can

simply extract the time course from the hippocampus for each

session, and enter this as a regressor together with all the regres-

sors we would normally use to describe the task. Then in a higher

level analysis, we identify voxels in which the variance explained

by hippocampal activity increases in the second session (i.e. areas

in which the Z-score for a regressor representing the time course

of the hippocampal ROI increases). Essentially, in this case we are

modelling the interaction between the effect of the seed ROI and

session (pre-/post-training), rather than the interaction between

the seed ROI and task blocks. Note that such an effect could be

driven by changes in the kind of factors we normally model out by

including the seed ROI time course as a regressor of no inter-

est�for example, changes in anatomical connectivity. However,

the approach is valid because a between-sessions effect could

only be driven by a change in some factor, such as anatomical

connectivity, which can be understood as the mechanism for the

change in functional connectivity, and is therefore not a confound

but a part of the effect of interest. In contrast, such between-ses-

sions effects cannot be explained by a change in the response of the

brain regions to the task itself, because even if the main effect of

task has changed (say, the hippocampus and prefrontal cortex are

both more active during the task after training), this effect will be

captured by the task regressors for each session.

(b) Using approach (a), we can conclude that functional connectivity

has changed due to the between-sessions intervention, but not that

this effect is task-specific. For example, after training people may

be more inclined to recall spatial information, in general, even

during passive travel or even during rest. Therefore, if we wish

to conclude that the functional connectivity change is specific to a

psychological context (e.g. that the hippocampus and prefrontal

cortex interact more when navigating in a pre-trained maze, as

opposed to simply saying HPC and PFC interact more after train-

ing in a maze) then it is necessary to do the full PPI analysis for

each session as described for single session analysis, and compare

the PPI effects in a higher level analysis.

Note that instead of between sessions, either of these approaches

could be used to compare functional connectivity between groups of

people�and the same considerations would apply when choosing

method a or b. Approach (a) has been used, for example to compare

carriers of genetic variations of a serotonin transporter (Heinz et al.,

2005), and to compare schizophrenic patients to healthy controls

(Boksman et al., 2005).

INTERPRETING FUNCTIONAL CONNECTIVITY IN PPI
AND RESTING-STATE DATA

When PPI was proposed in 1997, the idea of using activity in one brain

area to explain activity in another brain area was novel and surprising.

In 2011, this idea will be familiar to many because it is the basis of

resting-state connectivity studies (Biswal et al., 1995; Deco et al., 2011).

We now know that a large proportion of activity in any brain area can

be predicted by looking at activity in anatomically connected and/or

functionally related brain areas. This is true even when the brain is at

rest, i.e. not involved in any explicit task. At rest, the brain’s activity

can be decomposed into a set of canonical spatial maps or ‘resting state

networks’, which resemble functional networks commonly observed in

task-based fMRI studies (Damoiseaux et al., 2006; Smith et al., 2009).

Resting-state fMRI is a powerful tool for investigating the brain, and

is increasingly being used to contrast between groups of participants or

to examine the effects of an intervention. Since both PPI and resting-

state studies investigate ‘functional connectivity’, it seems worth re-

viewing the difference between the kinds of hypotheses which can be

tested using PPI or resting-state data.

There is an important difference of interpretation between resting-

state functional connectivity and functional connectivity as tested with

PPI, and the two types of data should be regarded as complementary,

not equivalent. In PPI, a functional connectivity effect is defined as a

task-specific change in the relationship between two brain areas, over

and above what can be explained by the shared main effects of task or

by non-task dependent factors. In contrast, changes in resting-state

networks’ activity may be driven either by changes in connectivity be-

tween the nodes of the network, or simply by changes in activity within

the network, without changes in connectivity. In general in resting

state, changes in connectivity cannot be distinguished from changes

in activity because of two confounding factors.

Unconstrained mental activity

Consider our maze navigation example one more time. Say we give

participants fMRI scans before and after familiarization with the maze,

but in this case we use resting-state scans. Let us say we find an

increased relationship between activity in the hippocampus and pre-

frontal cortex, in the ‘after’ scan. Is this because the prefrontal cortex

and hippocampus are now working together to consolidate the par-

ticipant’s mental map of the maze? Maybe, but remember the other

possible hypothesis which motivated the PPI analysis at the very start

of this tutorial: that prefrontal cortex and the hippocampus are both

involved in maze navigation but do not interact. If, during the second

resting-state scan, the participants are thinking about the maze task

they have just done, this non-interaction hypothesis would also predict

increased co-activation of the two areas. In other words, in the resting-

state case, because we cannot model out the shared main effect of

navigation (as this is unconstrained mental activity), we cannot dis-

tinguish between an increase in navigation-related cognition which

causes co-activation of hippocampus and prefrontal cortex, and in-

crease in functional connectivity so that one area is driving the other

more strongly in the post-training state.

Changes in signal-to-noise ratio

There is a further difficulty in distinguishing changes in resting-state

activity and connectivity, which was recently highlighted in a review by

Friston (2011). As we shall see this difficulty does not apply in the case

of PPI.

In the resting state, an increase in activity in either of two brain areas

could produce a change in the observed functional connectivity be-

tween them, even if in fact there is no change in the extent to which

one area activates the other at a neural level, simply due to an increase

in SNR (signal-to-noise ratio). This is because what we are testing is

how strongly the observed signal in one area depends on the observed

signal in another area�but the observed signal measured with fMRI is a

mixture of neural signal and observation noise. For example, say 5% of

the variance in neural signal in one area (say, prefrontal cortex) is

accounted for by activity in another area (say, hippocampus), but

only 10% of the observed variance is due to neural signal. This

means the observed effect size for the degree to which the hippocam-

pus ROIs time course explains activity in prefrontal cortex is 0.5% (5%
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of 10%). Now, if, after the maze training, neural activity in the hippo-

campus doubles but external sources of noise (electrical noise, scanner

noise) stay the same, then the PPI regressor will more closely reflect

neural activity (rather than external sources of noise) and hence would

account for a greater percentage of observed variance in other brain

regions, even if correlations on the neural level remained the same.

This apparent increase in ‘functional connectivity’ is simply due to the

change in SNR in the seed region without any change in connectivity at

all (Friston, 2011).

In the case of PPI, this problem is circumvented because we are

explicitly modelling activity, separately from our model of connectiv-

ity. Recall that in the PPI analysis, we modelled both the main effect of

the task and the seed ROI time course, as well as the PPI. The only

change in SNR that could affect our PPI measure would be a task-

specific one (because PPI is a measure of task-dependent changes in

connectivity). But any task-dependent change in overall activity would

be captured by the task regressor. Hence the ‘SNR issue’ does not apply

for PPI.

A matter of interpretation

In view of the above comments, the reader might think that comparing

resting-state data between groups is never useful. This is not the case.

Whether a resting state or PPI approach is more appropriate depends

very much on the research question.

In the case of resting-state data, both the issues of ‘uncontrolled

mental activity’ and change in SNR are problematic if we wish to

make an inference that functional connectivity has changed, over and

above what can be explained by a change in the activity of individual

brain areas, because in fact connectivity and activity cannot be sepa-

rated. This is in contrast to a task-based PPI analysis in which the

change in activity is under the control of the experimenter and can

be modelled (by the task regressor). Therefore, if you wish to asses

changes in connectivity, a PPI approach is required and you should

refer to the section above on ‘between groups PPI’ to determine how to

implement this. However, in many cases, changes in the brains’ resting

patterns of activity (not necessarily connectivity) are exactly what re-

searchers are interested in, and in that case, a resting-state approach

may be more informative.

To illustrate the difference in interpretation, let us consider another

fictional experiment. Say we are interested in the role of the amygdala

in fear and anxiety and consider two different cases.

(a) Fear of spiders: we hypothesize that in people who feel fear when

they see spiders, functional connectivity between the visual cortex

and the amygdala is stronger in the context of spiders. In this case,

we are particularly interested in connectivity relating to a stimulus

(the spider), so we need a task-based PPI study�for example, we

take a group of spider-fearing subjects and show them pictures of

spiders in the scanner, before and after phobia therapy. We con-

duct a PPI analysis using the amygdala as a seed region and the

spider pictures as the psychological context, and compare the PPI

effect before and after therapy. We find that activity in the amyg-

dala is more strongly correlated with the spider-evoked visual ac-

tivity before the therapy, than after.

(b) Generalized anxiety: say we are interested in people who are gen-

erally more anxious and we think that their anxious state has

something to do with the amygdala. We conduct resting-state

scans on the patients before and after therapy for anxiety, and

then analyse the data using a seed in the amygdala. We find that

the network of areas correlating with the amygdala is reduced after

the therapy. Now, given the confounds described above, this could

be simply because the amygdala and other areas are active in anx-

ious thoughts, and the patients are experiencing fewer anxious

thoughts during the post-therapy scan. In other words, a change

in unconstrained cognition has occurred. But this is exactly what

the therapy aimed to achieve! Therefore a change in resting brain

activity in a particular network is an interesting result, even

though we cannot distinguish a change in activity from a change

in connectivity in this case (and researchers should bear this point

in mind when discussing their findings).

CAVEATS

Readers who are considering using PPI analysis should be aware of the

following issues.

Deconvolution

PPI relies on modelling the interaction between a psychological context

and brain activity. A problem arises because while the psychological

context is measured in real time, brain activity is measured with a lag

of �6 s and with temporal blurring, due to convolution with the

haemodynamic response function. To combine the two time-series,

both need to be convolved with the HRF, or both need to be expressed

in terms of the underlying neural activity (deconvolved). The imple-

mentation of PPI in FSL uses the first approach while the implemen-

tation in SPM uses the second.

The main argument for attempting to deconvolve activity recorded

from the seed ROI is that since we are interested in interactions on the

neural level, PPI should operate on neural-like data (Gitelman et al.,

2003). The main argument against is that there is no deterministic

way to deconvolve the HRF if its shapes is not known exactly. The

only way to deconvolve two unknown signals is to use an algorithm,

which tries to find the most plausible combination of neural signal and

HRF to fit to the data. Therefore, there is no way of knowing if the

deconvolution is really correct, and it may be just as valid to transform

the psychological regressor with an assumed HRF. A further possibility

would be to use a basis set for the HRF and hence produce a set of PPI

regressors; however, interpretation of the results from such an analysis

would be complicated by the need to distinguish the effect of similarity

in HRF shape from scale of response; to our knowledge there is no

literature exploring this approach.

In either case assumptions about the shape of the HRF is important.

This is particularly so in the case of event-related designs, in which

convolved regressors really reflect the shape of the HRF�in contrast, in

a block design, almost any HRF will saturate to look a bit like a block.

(Lack of) power

PPI analyses tend to lack power and hence a high proportion of false

negatives should be expected. In a PPI analysis, the psychological con-

text, activity in a seed region and the interaction between them are all

modelled. The interaction term (the PPI) is likely to have a similar

time course to both the psychological and seed ROI time courses,

because it was created by multiplying them together. General linear

model analysis, as used in PPI and in fMRI analysis in general, detects

variance that can be uniquely explained by one of the regressors in the

model. This is problematic when two similar regressors are included in

the model, because any variance which could be explained by both

regressors is not assigned to either. Essentially, this means that the

power to detect effects is lower for correlated regressors�as in PPI.

This characteristic of PPI designs is unavoidable, but researchers

who perform PPI analyses should bear in mind that the chance of

false negatives is rather high with this type of analysis (because the

expected effect size would be much smaller than for an analysis of the

main effect of task, etc).
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Event-related designs

It may be particularly difficult to use PPI in experiments with

event-related designs, for the two reasons just described: first, the

shape of the HRF and assumptions about it are more important in

the context of event-related designs. Secondly, as PPI analyses tend to

lack power and event-related designs tend to have smaller effect sizes

than block designs (due to a smaller proportion of the task time being

spent in the condition of interest), spurious null results may be even

more likely for PPIs in event-related designs that PPIs in block designs.

Spurious PPIs?

A PPI effect is a task-specific change in correlation between areas,

which cannot be explained simply by a shared external driving force,

such as the main effect of a task. To exclude these external effects, we

model out the main effect of task. The success of this process depends

on the assumption that we have been able to model all task related

variance�but in practice this is unlikely to be the case because we make

simplifying assumptions about the shape of neural responses, and we

ignore unconstrained aspects of the participant’s behaviour.

For example, say that in the hypothetical maze–navigation experi-

ment above, we modelled navigation using a block design (navigate/

passive travel/rest are modelled as 30-s blocks). The use of a block

design implies that the regions of interest are active fairly constantly

at all times in the navigation condition, but this is probably not totally

accurate. For example, what if in the navigation task, the prefrontal

cortex and hippocampus (independently) are more activated when you

turn a corner or reach a junction, and less active when you are moving

down a straight section of the maze? Then their activity would actually

look less like a 30-s block, and more like a spike every time a corner is

encountered. This shared phasic activity causes a correlation between

hippocampus and prefrontal cortex, during task blocks, over and

above what is explained by our blocked model of task-driven activity.

Such a correlation will be interpreted as a ‘PPI’ effect. This is prob-

lematic because un-modelled task-related variance is almost inevitably

present in every experiment�other obvious sources would be vari-

ations in the participant’s level of attention, response to errors and

learning effects. Furthermore, any non-linearities in the coupling be-

tween neural activity and the signal as measured by fMRI would not be

modelled by the linear confound regressor for the task, and hence

could possibly drive a spurious PPI effect. Users of PPI should bear

these confounds in mind when interpreting their results.

SUMMARY

PPI analysis is a technique for investigating task-specific changes in

functional connectivity, defined as task-specific changes in the rela-

tionship between brain areas. A task-specific increase in functional

connectivity between areas is usually interpreted in terms of an

increased flow of information between brain areas during that task.

Task-based functional connectivity analysis therefore provides infor-

mation about brain function, which is complementary to both

task-based fMRI studies, which indicate which brain areas are involved

in a task, and resting-state functional connectivity which investigates

the brain’s intrinsic functional network architecture in the absence of

external driving stimuli.

Detailed instructions on how to run PPI

Step by step instructions on how to run a PPI in FSL can be found

on the corresponding author’s website: http://www.fmrib.ox.ac.uk/

Members/joreilly/what-is-ppi. Instructions for running a PPI in SPM

can be found in the SPM8 manual, www.fil.ion.ucl.ac.uk/spm/doc/

manual.pdf
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