PHYSIOLOGICAL DE-NOISING FMRI DATA Katie Dickerson & Jeff MacInnes February 11th, 2013

Theoretical overview

Theoretical overview

Theoretical overview

• Tutorial in FSL

• Physiological measurements

• Physiological measurements

Physiological measurements

How these signals impact BOLD data

Physiological measurements

How these signals impact BOLD data

• Physiological measurements

How these signals impact BOLD data

Motivation and importance of removing these signals

 Challenge - detect small neuronal-activation induced blood oxygenation changes in the presence of other signal fluctuations

- Challenge detect small neuronal-activation induced blood oxygenation changes in the presence of other signal fluctuations
- Many sources of noise scanner variations, participant movement, physiological processes

- Challenge detect small neuronal-activation induced blood oxygenation changes in the presence of other signal fluctuations
- Many sources of noise scanner variations, participant movement, physiological processes
 - physiological fluctuations account for less than 10% of noise (Bianciardi et al., 2008; Shmueli et al., 2007)

- Challenge detect small neuronal-activation induced blood oxygenation changes in the presence of other signal fluctuations
- Many sources of noise scanner variations, participant movement, physiological processes
 - physiological fluctuations account for less than 10% of noise (Bianciardi et al., 2008; Shmueli et al., 2007)
 - averaging data can increase artifact effects (Birn et al., 2009)

Cardiac

Cardiac

Respiration

Cardiac

Respiration

Respiration

• Respiration volume per time (RVT) - difference between minimum and maximum belt positions at the peaks of inspiration and expiration, divided by the time between the peaks of inspiration (Birn et al., 2006)

Cardiac

- Cardiac
 - pulses induce signal changes in voxels containing lots of blood and/or CSF

- Cardiac
 - pulses induce signal changes in voxels containing lots of blood and/or CSF
 - localized effects (Dagli et al., 1999; Glover et al., 2000; Birn et al., 2006)

Respiration

- Respiration
 - chest movement causes magnetic field changes that can shift a brain image

- Respiration
 - chest movement causes magnetic field changes that can shift a brain image
 - change arterial level of CO₂, a vasodilator

- Respiration
 - chest movement causes magnetic field changes that can shift a brain image
 - change arterial level of CO₂, a vasodilator
 - breath-hold of 30 seconds causes 3-5% signal increase (Kastrup et al., 1999; Li et al., 1999; Stillman et al., 1995)

- Respiration
 - chest movement causes magnetic field changes that can shift a brain image
 - change arterial level of CO₂, a vasodilator
 - breath-hold of 30 seconds causes 3-5% signal increase (Kastrup et al., 1999; Li et al., 1999; Stillman et al., 1995)
 - global effects (Glover et al., 2000; Birn et al., 2006)

Respiration volume

- Respiration volume
 - variations in this signal (<0.1 Hz) overlap with frequency range of resting state, functionally connected networks (Cordes et al., 2001; Birn et al., 2006)

PHYSIO AND BOLD SIGNALS
PHYSIO AND BOLD SIGNALS

 Cause undesired perturbation of the image including intensity fluctuations and other artifacts

PHYSIO AND BOLD SIGNALS

 Cause undesired perturbation of the image including intensity fluctuations and other artifacts

PHYSIO AND BOLD SIGNALS

 Cause undesired perturbation of the image including intensity fluctuations and other artifacts

 These add noise which degrades the statistical significance of activation signals

EXAMPLES

CARDIAC INFLUENCES

FIG. 2. The full volume of a typical subject showing a topographical display of the percentage signal change during the cardiac cycle. Pixels shown in color indicate regions demonstrating significant cardiac-related signal changes. Overlaid pixel colors have been scaled to reflect percentage signal change according to the color table shown.

Significant effects of cardiac related signal were found in 27.5% of voxels

Figure from Dagli et al., 1999

CARDIAC INFLUENCES

FIG. 4. Comparison of selected functional slices (top slices) from one subject (S1) with the cerebral vasculature as examined by magnetic resonance angiography (bottom slices). The overlaid pixel colors on the functional slices have been scaled to reflect percentage signal change according to the color table shown in Fig. 2. There is a strong correspondence of tissue areas showing significant cardiac-related signal change to the locations of major blood vessels and CSF pools (A—transverse sinus, B—carotid artery, C—fourth ventricle, D—basilar artery, E—main trunk of middle cerebral artery (MCA), F—circle of Willis (entire region), G—posterior cerebral artery, H—branch of MCA, I—superior sagittal sinus, J—anterior cerebral artery, K—third ventricle, L—inferior sagittal sinus).

Figure from Dagli et al., 1999

RESPIRATION INFLUENCES

RVT & resting state functional connectivity - overlapping networks

Fig. 2. A) fMRI signal correlated with respiration volume per time (RVT) changes, B) functional connectivity with a seed region in the posterior cingulate from a group of 10 subjects.

Figure from Birn 2012

RESPIRATION INFLUENCES

• RVT & functional data

% of time-series signif. corr. w/ RVT

Fig. 2. Location of respiration changes: map showing for each voxel the percentage of time series (out of a total of 16 runs from 10 subjects) where the fMRI signal during rest was significantly (CC > 0.4, $P < 10^{-6}$ uncorrected) correlated with the respiration volume per time (RVT) changes. Signal changes are largest in gray matter and near large blood vessels.

Figure from Birn et al., 2006

RESPIRATION INFLUENCES

• RVT & functional data

(a) Time course of respiration volume per time during the lexical task averaged over all subjects. Bottom 4 graphs show signal intensity time courses averaged over all subjects and over different regions of interest: regions with significant (b) activation, (c) de-activation (relative to resting baseline), (d) RVT changes, and (e) RVT changes outside of regions showing lexical activations or deactivations. Times during which the lexical task was performed are indicated in gray.

Figure from Birn et al., 2009

CORRECTING PHYSIOLOGICAL NOISE

Figure from Glover et al., 2000

Figure from Glover et al., 2000

Figure from Glover et al., 2000

Figure from Glover et al., 2000

CORRECTION REDUCES STDEV

FIG. 2. Time series without (top) and with (bottom) RETROICOR correction corresponding to Fig. 1. Ordinate values are expressed as percentage of mean values.

Figure from Glover et al., 2000

CORRECTION REDUCES STDEV

FIG. 2. Time series without (top) and with (bottom) RETROICOR correction corresponding to Fig. 1. Ordinate values are expressed as percentage of mean values.

Figure from Glover et al., 2000

CORRECTION REDUCES STDEV

Fig. 5. Standard deviation: average temporal standard deviation without correction, with RETROICOR correction, respiration volume per time correction (RVTcor), constant respirations, and constant respirations with RETROICOR. Lines indicate temporal standard deviation for each subject, averaged over the whole brain. Bar graph indicates average over all subjects.

Figure from Birn et al., 2006

CORRECTION IMPROVES DETECTION

Fig. 9. Detection of (de-)activation: Average Z scores for regions positively ("activations") and negatively ("deactivations") correlated with the lexical task without correction, with RETROICOR correction, and with respiration volume per time correction (RVTcor).

Figure from Birn et al., 2006

• Corrections without collecting cardiac and respiration data:

• k-space corrections (Hu et al., 1995)

- k-space corrections (Hu et al., 1995)
- Low-pass filtering

- k-space corrections (Hu et al., 1995)
- Low-pass filtering
- ICA identify and remove fluctuations that match patterns of known physiological noise (Perlbag et al., 2007; Beall and Lowe, 2007)

- k-space corrections (Hu et al., 1995)
- Low-pass filtering
- ICA identify and remove fluctuations that match patterns of known physiological noise (Perlbag et al., 2007; Beall and Lowe, 2007)
 - Caveat: cannot validate signal you identify is due to physiological measures

• What to do when these signals are task related?

- What to do when these signals are task related?
 - Emotion regulation breathing techniques

- What to do when these signals are task related?
 - Emotion regulation breathing techniques
 - Emotional arousal heart rate changes

- What to do when these signals are task related?
 - Emotion regulation breathing techniques
 - Emotional arousal heart rate changes
 - Regressing these signals out could remove neuronal activity

- What to do when these signals are task related?
 - Emotion regulation breathing techniques
 - Emotional arousal heart rate changes
 - Regressing these signals out could remove neuronal activity
- Consider your task design & quantify degree of correlation

• Physiological noise affects our data

• Physiological noise affects our data

• Physiological noise affects our data

• Easy to model this noise (if not correlated with task)

• Physiological noise affects our data

• Easy to model this noise (if not correlated with task)

• Physiological noise affects our data

Easy to model this noise (if not correlated with task)

• Be sure to consider your task design
TUTORIAL IN FSL

physiological data acquisition while scanning at BIAC

data formatting

formatting acquired data for subsequent analyses

physio noise modeling

physiological denoising as implemented in FSL 5.0

easy to record physiological measures from within PTB/matlab experiment script

easy to record physiological measures from within PTB/matlab experiment script

recordPhysio.m

<u>recording step</u>	<u>code snippet</u>	
initialize analog input device	<pre>m = recordPhysio('init')</pre>	
start recording	<pre>m = recordPhysio('start', m)</pre>	
stop recording	<pre>m = recordPhysio('stop', m)</pre>	
retrieve values	output = recordPhysio('getData', m)	

easy to record physiological measures from within PTB/matlab experiment script

recordPhysio.m

<u>recording step</u>	<u>code snippet</u>	
initialize analog input device	<pre>m = recordPhysio('init')</pre>	
start recording	<pre>m = recordPhysio('start', m)</pre>	
stop recording	<pre>m = recordPhysio('stop', m)</pre>	
retrieve values	output = recordPhysio('getData', m)	

BIAC 5 analog channels

<u>channel</u>	<u>input signal</u>	
0	Biopac Respiration Belt	
	Biopac GSR	
2	Biopac EEG	
3	Biopac Cardiac (pulse)	
4	Biopac Cardiac (oxSat)	
5	Scanner Pulse	

default channels for recordPhysio.m in **bold**

easy to record physiological measures from within PTB/matlab experiment script

recordPhysio.m

<u>recording step</u>	<u>code snippet</u>	
initialize analog input device	<pre>m = recordPhysio('init')</pre>	
start recording	<pre>m = recordPhysio('start', m)</pre>	
stop recording	<pre>m = recordPhysio('stop', m)</pre>	
retrieve values	output = recordPhysio('getData', m)	

BIAC 5 analog channels

<u>channel</u>	<u>input signal</u>	
0	Biopac Respiration Belt	
	Biopac GSR	
2	Biopac EEG	
3	Biopac Cardiac (pulse)	
4	Biopac Cardiac (oxSat)	
5	Scanner Pulse	

default channels for recordPhysio.m in **bold**

for up-to-date channel info:

BIAC 5 info: http://wiki.biac.duke.edu/biac:experimentalcontrol:biac5hardware

BIAC 6 info:

http://wiki.biac.duke.edu/biac:experimentalcontrol:biac6hardware

data formatting choice of formatting steps depends on analysis package

data formatting

choice of formatting steps depends on analysis package

1.

align physio timestamps with desired

scan volumes remove data corresponding to DisDaq period (if necessary)

> truncate overshot physio data (if necessary)

nDataPts = scan length (in sec) * physio sampling rate

data formatting

choice of formatting steps depends on analysis package

align physio timestamps with desired

scan volumes remove data corresponding to DisDaq period (if necessary)

> truncate overshot physio data (if necessary)

nDataPts = scan length (in sec) * physio sampling rate

PNM tools

<u>combined</u> 3-col text file with respiration, cardiac, and triggers

data formatting

choice of formatting steps depends on analysis package

align physio timestamps with desired

scan volumes remove data corresponding to DisDaq period (if necessary)

> truncate overshot physio data (if necessary)

nDataPts = scan length (in sec) * physio sampling rate

<u>separate</u> 1-col text file for respiration, cardiac, and triggers

PNM tools

<u>combined</u> 3-col text file with respiration, cardiac, and triggers

 PNM
 FSL toolkit assisting with the creation of physio regressors, which can then be included in subsequent GLM analyses

 * Requires FSL 5.0 (released Sept '12)

 PNM
 FSL toolkit assisting with the creation of physio regressors, which can then be included in subsequent GLM analyses
 * Requires FSL 5.0 (released Sept '12)

resulting physio regressors have slice-specific values

PNM FSL toolkit assisting with the creation of physio regressors, which can then be included in subsequent GLM analyses * Requires FSL 5.0 (released Sept '12)

resulting physio regressors have slice-specific values

to open GUI, type:

[cmd prompt]%pnm_gui

PNM FSL toolkit assisting with the creation of physio regressors, which can then be included in subsequent GLM analyses * Requires FSL 5.0 (released Sept '12)

resulting physio regressors have slice-specific values

to open GUI, type:

[cmd prompt]%pnm gui

O O X PNM
Input
Input Physiological Recordings path_to_formatted_physio_text_file
Input TimeSeries (4D) path_to_example_fMRI_dataset
Column number of data: Cardiac 3 🜻 Respiratory 2 🚔 Scanner triggers 1 🚔
💷 Pulse Ox Triggers Sampling Rate (Hz) 100 🚔 TR (sec) 1.0 🚔
Slice Order: 🗇 Up 💠 Down 🗢 Interleaved Up 💠 Interleaved Down
Output
Output Basename output_name
-EVs-
Order for Cardiac EVs 4
Order for Respiratory EVs 4
Order for Cardiac Interaction EVs 2
Order for Respiratory Interaction EVs 2
F RVT F HeartRate CSF
CSF mask
Advanced Options
Go Exit Help

\varTheta 🔿 🔿 📉 🕅 🕅
- Input
Input Physiological Recordings path_to_formatted_physio_text_file
Input TimeSeries (4D) path_to_example_fMRI_dataset
Column number of data: Cardiac 3 🚔 Respiratory 2 🚔 Scanner triggers 1 🚔
Pulse Ox Triggers Sampling Rate (Hz) 100 TR (sec) 1.0
Slice Order: 🗇 Up 💠 Down 🔶 Interleaved Up 💠 Interleaved Down
Output
Output Basename output_name 🔄
EVs
Order for Cardiac EVs 4
Order for Respiratory EVs 4
Order for Cardiac Interaction EVs 2
Order for Respiratory Interaction EVs 2
F RVT F HeartRate CSF
CSF mask
Advanced Options
Go Exit Help

GUI details:

Input
Input Physiological Recordings path_to_formatted_physio_text_file
Input TimeSeries (4D) path_to_example_fMRI_dataset
Column number of data: Cardiac 3 🖨 Respiratory 2 🖨 Scanner triggers 1 🚔
💷 Pulse Ox Triggers Sampling Rate (Hz) 100 🚔 TR (sec) 1.0 🚔
Slice Order: 🗇 Up 💠 Down 🔶 Interleaved Up 💠 Interleaved Down
Output
Output Basename output_name
EVs
Order for Cardiac EVs 4
Order for Respiratory EVs 4
Order for Cardiac Interaction EVs 2
Order for Respiratory Interaction EVs 2
RVT HeartRate CSF
CSF mask
Advanced Options
Go Exit Help

GUI details:

- basic configuration options

- paths to inputs
- order of cols in physio file
- physio parameters
- scan parameters

	<u>GUI details:</u>
Input Input Physiological Recordings path_to_formatted_physio_text_file Input TimeSeries (4D) path_to_example_fMRI_dataset Column number of data: Cardiac 3 Respiratory 2 Scanner triggers 1 Pulse Ox Triggers Sampling Rate (Hz) 100 TR (sec) 1.0 Slice Order: Up Down Interleaved Up Interleaved Down Output Output Output Basename output_name	 basic configuration options paths to inputs order of cols in physio file physio parameters scan parameters
EVs-	
Order for Cardiac EVs 4 Order for Respiratory EVs 4 Order for Cardiac Interaction EVs 2 Order for Respiratory Interaction EVs 2 Image: CSF mask Image: CSF Image: Options Image: CSF	 physio model specifications complexity of model additional physio measures RVT HR CSF mask

setting the order for physic components

cardiac & respiration:

cardiac and respiration are both <u>quasi-periodic</u> signals:

setting the order for physic components

cardiac & respiration:

cardiac and respiration are both <u>quasi-periodic</u> signals:

Fourier Series:

any periodic signal can be fully represented as a sum of sine and cosine terms:

Fourier series of periodic function f(t) source: mathworld.wolfram.com

setting the order for physic components

cardiac & respiration:

to denoise fMRI data, physio signals are modeled using expanded Fourier series of the form:

setting the order for physic components

cardiac & respiration:

to denoise fMRI data, physio signals are modeled using expanded Fourier series of the form:

$$\gamma(t) = \sum_{n=1}^{N} a_n \cos(n \cdot \Phi(t)) + b_n \sin(n \cdot \Phi(t))_{Glover et al. (2000)}$$

setting the order for physic components

cardiac & respiration:

to denoise fMRI data, physio signals are modeled using expanded Fourier series of the form:

setting the order for physic components

cardiac & respiration:

to denoise fMRI data, physio signals are modeled using expanded Fourier series of the form:

- one for the sine term

setting the order for physio components

cardiac & respiration:

-EVs	
Order for Cardiac EVs	4
Order for Respiratory EVs	4
Order for Cardiac Interaction EVs	2
Order for Respiratory Interaction EVs	2

setting the order for physio components

cardiac & respiration:

- Use the GUI to set the desired number of regressors for each component

setting the order for physic components

cardiac & respiration:

- Use the GUI to set the desired number of regressors for each component

for each physio component (i.e. cardiac, resp):

<u>order</u>	<u>frequency</u>	<u># sine terms</u>	<u># cosine terms</u>	<u>Total # regressors</u>
	base	1	1	2
2	1st harmonic	2	2	4
3	2nd harmonic	3	3	6
4	3rd harmonic	4	4	8

setting the order for physic components

interaction terms

In addition to modeling cardiac and respiration separately, you can also model interaction effects

Order for Cardiac EVs4Order for Respiratory EVs4Order for Cardiac Interaction EVs2Order for Respiratory Interaction EVs2	-EVs	
Order for Respiratory EVs4Order for Cardiac Interaction EVs2Order for Respiratory Interaction EVs2	Order for Cardiac EVs	4
Order for Cardiac Interaction EVs 2 🔹 Order for Respiratory Interaction EVs 2	Order for Respiratory EVs	4
Order for Respiratory Interaction EVs 2	Order for Cardiac Interaction EVs	2
	Order for Respiratory Interaction EVs	2

setting the order for physic components

interaction terms

In addition to modeling cardiac and respiration separately, you can also model interaction effects

setting the order for physio components

interaction terms

In addition to modeling cardiac and respiration separately, you can also model interaction effects

for each unique combination of cardiac and respiratory frequencies, there will be 4 interaction terms produced: Ω

$$\begin{cases} \beta \cos(n \cdot \Phi_{card} + m \cdot \Phi_{resp}) \\ \beta \sin(n \cdot \Phi_{card} + m \cdot \Phi_{resp}) \\ \beta \cos(n \cdot \Phi_{card} - m \cdot \Phi_{resp}) \\ \beta \sin(n \cdot \Phi_{card} - m \cdot \Phi_{resp}) \\ \beta \sin(n \cdot \Phi_{card} - m \cdot \Phi_{resp}) \end{cases}$$
 subtractive

where, n = each order of cardiac interaction term m = each order of respiration interaction term

creating the regressors

creating the regressors

After running GUI (or stage1 script)

Within the output directory you'll find a *_pnm1.html file containing physio plots with detected peaks overlaid

creating the regressors

After running GUI (or stage1 script)

Within the output directory you'll find a *_pnm1.html file containing physio plots with detected peaks overlaid

Instructions:

- 1. Adjust the (horizontal) zoom and vertical size with the buttons below, and then choose to delete or add detected peaks in
- You can zoom into a selection by highlighting (click and drag) and return to normal by double clicking (away from the t slow)
- Click on the graph (near the trace) to add or delete peaks but you do not need to be too exact as it will select the neares maximum of the trace. The Clear button will clear all peaks identified so far.
- 4. The command you need to run next is displayed at the bottom. Note that nothing will be displayed on this graph here ju

Plot Resizing: Zoom Out Zoom In Taller Shorter	Displayed plots: Cardiac Respiratory
Editing functions: Delete Peaks Add Peaks Clear	Current Status: Add Current Trace: Respiratory
Command to run next:	
/Volumes/adcock_lab/main/studies/SRM.01/data/physio/1555	9/PNM_files/control_run1/control_run1_pnm_stage2

creating the regressors

After running GUI (or stage1 script)

Within the output directory you'll find a *_pnm1.html file containing physio plots with detected peaks overlaid

manually confirm peaks

use the interactive window to add missing peaks or remove falsely identified peaks

Instructions:

- 1. Adjust the (horizontal) zoom and vertical size with the buttons below, and then choose to delete or add detected peaks in
- You can zoom into a selection by highlighting (click and drag) and return to normal by double clicking (away from the t slow)
- Click on the graph (near the trace) to add or delete peaks but you do not need to be too exact as it will select the neares
 maximum of the trace. The Clear button will clear all peaks identified so far.
- 4. The command you need to run next is displayed at the bottom. Note that nothing will be displayed on this graph here ju

Plot Resizing: Zoom Out Zoom In Taller Shorter	Displayed plots: Cardiac Respiratory
Editing functions: Delete Peaks Add Peaks Clear	Current Status: Add Current Trace: Respiratory
Command to run next:	
/Volumes/adcock_lab/main/studies/SRM.01/data/physio/155	59/PNM_files/control_run1/control_run1_pnm_stage2
creating the regressors

After running GUI (or stage1 script)

Within the output directory you'll find a *_pnm1.html file containing physio plots with detected peaks overlaid

manually confirm peaks

use the interactive window to add missing peaks or remove falsely identified peaks

once complete, run the full script listed at the bottom of the window. This will create the regressors as well as additional required files

Instructions:

- 1. Adjust the (horizontal) zoom and vertical size with the buttons below, and then choose to delete or add detected peaks in
- You can zoom into a selection by highlighting (click and drag) and return to normal by double clicking (away from the t slow)
- Click on the graph (near the trace) to add or delete peaks but you do not need to be too exact as it will select the neares maximum of the trace. The Clear button will clear all peaks identified so far.
- 4. The command you need to run next is displayed at the bottom. Note that nothing will be displayed on this graph here ju

Plot Resizing: Zoom Out Zoom In Taller Shorter	Displayed plots: Cardiac Respiratory
Editing functions: Delete Peaks Add Peaks Clear	Current Status: Add Current Trace: Respiratory
Command to run next:	
/Volumes/adcock_lab/main/studies/SRM.01/data/physio/1555	59/PNM_files/control_run1/control_run1_pnm_stage2

creating the regressors

\varTheta 🔿 🔿 📉 🕅 🕅 🕅 🕅	IRI Expert Analy	sis Tool v6.00	
First-level an	alysis — Ful	analysis 😑	
Lution Data Data State			
Misc Data Pre-stats State	S Post-stats	Registration	1
📕 Use FILM prewhitening			
Don't Add Motion Parameters	-		
Voxelwise Confound List			
BETA OPTION: Apply external :	script		
Add additional confound EV	s		
Model setup wizard			
Full model setup			
Go Save	Load	ixit Hel	p Utils

adding regressors to FEAT model

creating the regressors

\varTheta 🔿 🔿 📉 FEAT - FMRI Expert Analysis Tool v6.00	
First-level analysis 🔲 Full analysis 🛁	
Misc Data Pre-stats Stats Post-stats Registration	
Use FILM prewhitening	
Don't Add Motion Parameters 🛁	
Voxelwise Confound List	
BETA OPTION: Apply external script	
☐ Add additional confound EVs	
Model setup wizard	
Full model setup	
Go Save Load Exit Help Utils	

adding regressors to FEAT model

in addition to creating a 4D .nii.gz file for each regressor, the stage2 script will also create a text file containing the paths to each regressor (called *_evlist.txt)

creating the regressors

 FEAT - FMRI Expert Analysis Tool v6.00 First-level analysis = Full analysis = Misc Data Pre-stats Stats Post-stats Registration 	in addition to creating a 4D .nii.gz file for each regressor, the stage2 script will also create a text file containing the paths to each regressor (called *_evlist.txt)
 Use FILM prewhitening Don't Add Motion Parameters Voxelwise Confound List 	New option under the <u>Stats</u> tab in FEAT GUI. Load the path to the *_evlist.txt here
BETA OPTION: Apply external script Add additional confound EVs Model setup wizard Full model setup	
Go Save Load Exit Help Utils	

adding regressors to FEAT model

creating the regressors

 FEAT - FMRI Expert Analysis Tool v6.00 First-level analysis - Full analysis - Misc Data Pre-stats Stats Post-stats Registration 	in addition to crea each regressor, th create a text file c each regressor (c
Use FILM prewhitening Don't Add Motion Parameters	New option unde Load the path to
Voxelwise Confound List BETA OPTION: Apply external script Add additional confound EVs Model setup wizard Full model setup	All physio regresse treated as <u>confou</u> any shared variar be assigned to th
Go Save Load Exit Help Utils	

adding regressors to FEAT model

in addition to creating a 4D .nii.gz file for each regressor, the stage2 script will also create a text file containing the paths to each regressor (called *_evlist.txt)

New option under the <u>Stats</u> tab in FEAT GUI. Load the path to the *_evlist.txt here

All physio regressors are automatically treated as <u>confound regressors</u>, meaning any shared variance with EVs of interest will be assigned to the physio regressors

creating the regressors

loaded physio regressors will appear in design matrix

creating the regressors

loaded physio regressors will appear in design matrix

creating the regressors

loaded physio regressors will appear in design matrix

	tas	sk		_									p	hys	ÍO								
						がまたいとうというですとくくくくく	あるとうないろうであるとうとうとうとうできたが		「「「「「「「「「「「「「」」」」」」							うちょう ちょうちょう ちょうちょう ちょうしょう	「「「「「「「「「」」」」」」」」」」」」」」」」」」」」」」」」」」」」	「ちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちち	ないていていていたいとうとうというできたいできたいできたとうとう				
REST	REART	TALA	TEVA	ant	conf	conf	conf	conf	conf	conf	conf	conf	conf	conf	conf	conf	conf	conf	conf	conf	conf	conf	confi
-1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	-1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

more information

BIAC physio correction methods:

http://wiki.biac.duke.edu/biac:analysis:physiological

Physio Noise Modeling within FSL-5:

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/PNM

References (not exhaustive)

- 1. RETROICOR Glover et al. (2000). Magn Reson Med 44: 162-7
- 2. RVT Birn et al. (2006). NeuroImage 31: 1536-48
- 3. HR Shmueli et al. (2007). NeuroImage 38: 306-20
- 4. HR Chang et al. (2009). NeuroImage 44: 857-69
- 5. PNM Brooks et al. (2008). NeuroImage 39: 680-92
- 6. PNM Harvey et al. (2008). J Magn Reson Imaging 28: 1337-44
- 7. CO2 Cohen-Adad et al. (2010). NeuroImage 50: 1074-84