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Goals	  

•  Mumford	  et	  al.,	  2012	  
– Theory	  for	  single-‐trial	  es.mates	  	  

•  Crea.ng	  single-‐trial	  three	  column	  files	  
•  SeJng	  up	  the	  FSL	  model	  
•  Running	  featquery	  to	  extract	  single-‐trial	  
es.mates	  

•  Considera.ons	  for	  data	  exclusion	  



Mumford	  et	  al.,	  2012	  

•  The	  problem:	  
– Ac.va.ons	  can	  be	  accurately	  separated	  for	  	  

•  Blocked	  designs	  
•  Slow	  event-‐related	  designs	  

– More	  difficult	  for	  fast	  event-‐related	  designs	  
•  Hard	  to	  differen.ate	  adjacent	  trials	  



Mumford	  et	  al.,	  2012	  

•  The	  test:	  
– 8	  different	  methods	  for	  es.ma.ng	  single	  trials	  
– Tested	  on	  real	  and	  simulated	  data	  



1.	  Beta-‐series	  regression	  

•  Each	  trial	  modeled	  separately	  (i.e.,	  one	  
regressor	  for	  each	  trial)	  
– Good	  for	  slow-‐ER	  designs,	  bad	  for	  fast-‐ER	  designs	  

Although this does greatly reduce collinearity, slow event-related de-
signs are very inefficient for univariate analysis and also may tax the
subject's attention. The ultimate goal is to decrease the time between
trials (ISI), creating a design that is psychologically optimal while
retaining the ability to accurately estimate trial-specific activation pat-
terns. This will allow for more flexibility in the design of classification
studies, decreasing the amount of time the subject will spend in the
scanner as well as allowingmore stimuli to be presented to the subject.
Additionally, it is common to carry out secondary analyses on data for
studies that were not originally optimized for a classification analysis,
butmay have been optimizedwith other criteria inmind (e.g., detection
power). Finding a way to obtain trial-specific activations for faster
event-related designs will increase our ability to run secondary MVPA
analyses on the data.

In this study we compare eight models for estimating trial-specific
activation and examine the quality of the estimates aswell as evaluating
their performance in a classification analysis. The models (Fig. 1) are
briefly described here; further detail can be found in the Methods sec-
tion. Onemodel does not address collinearity, while 4 of the approaches
use regularization and 3 use strategies in regressor construction to re-
duce collinearity. Least squares estimation using the previously men-
tioned design matrix XS, referred to as LS-A (Least Squares — All), is
not expected to work well in the presence of collinearity. The four ap-
proaches with additional regularization include partial least squares
(PLS), support vector regression (SVR) and ridge regression using two
strategies for estimating the ridge parameter. These approaches intro-
duce bias in hopes of a beneficial decrease in the variance of the esti-
mates. The other 3 models are estimated using least squares but
attempt to reduce collinearity through the structure of the regressors.
Two of these models, Add6 and Add4–6, focus on capturing the peak
of the response by only modeling the time point(s) at 6 s or between
4 and 6 s after stimulus onset respectively. The third, LS-S (Least
Squares — Separate), runs a separate GLM for each trial where the
trial is modeled as the regressor of interest and all other trials are com-
bined into a single nuisance regressor.

Other studies involving the use of pattern classification for fMRI have
focused on different aspects of the classification analysis without much
attention spent on how the activation estimates are created for event-
related designs. Although some work has focused on how to best

summarize activation for blocked designs (Mourao-Miranda et al.,
2006), thework presented here is unique to event-related designs. Clas-
sification studies have also focused on feature selection, or reducing the
set of voxels used in the classification analysis to improve the classifica-
tion accuracy (Chen et al., 2006; DeMartino et al., 2008;Mourao-Miran-
da et al., 2006) as well as the performance of different classification
models (Carlson et al., 2003; Cox and Savoy, 2003; LaConte et al.,
2005; Misaki et al., 2010). Lastly, the use of different types of activation
estimates – such as usingmagnitude of the BOLD signal versus a t-statis-
tic as well as different strategies for normalizing the data – has been
compared for benefits in classification accuracy (Misaki et al., 2010).
The results from the present study can be combined with the insights
from these other studies to help create optimal data analysis strategies
for MVPA studies.

In what follows, we first outline the eight different estimation strat-
egies as well as the classification approach used to assess their perfor-
mance. The models are first applied to simulated data in order to
characterize the quality of the activation estimates (variability and cor-
relation with true values) and assess their classification performance
across different interstimulus interval lengths and noise levels. The
best-performing models are then applied to a real data set. We found
that the LS-S approach performed as well as or better than all of the
other approaches in both simulated and real data analysis.

Methods

Models considered

The estimation approaches considered here for obtaining trial-by-
trial estimates of BOLD activation are described in Fig. 1. All but one of
these approaches attempts to remedy the collinearity problem: the sim-
plest approach does not address collinearity and simply consists of the
least squares estimates of the general linear model Y=XSβ+!. The esti-
mate is given by β̂ ¼ X′SXSð Þ−1X′SY , where Y is the vector of the BOLD
response time series and XS is the design matrix of the form depicted in
the top left of Fig. 1 and β is the vector of trial-by-trial activation esti-
mates. This approach is referred to as LS-A, since least squares is used
and all parameters are estimated simultaneously. As mentioned above,
this model will most likely suffer from collinearity when stimuli are
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Fig. 1. The model estimation approaches considered for obtaining trial-by-trial parameter estimates. Five of the approaches (least squares, two versions of ridge regression, partial
least squares and support vector regression) used the design matrix shown on the top left, XS. This design matrix contains a single regressor for each trial (in this case 10) in the run,
where each regressor is an impulse function convolved with a double gamma HRF. The middle design corresponds to the Add6 model, which models each trial using an uncon-
volved boxcar function capturing the time point 6 s after the time of stimulus presentation. The last design illustrates the LS-S approach, where a trial-specific design matrix is
used to obtain the activation estimate for that trial. The design matrices contain two regressors, one for the trial of interest plus a second that models all other trials simultaneously.
So, XT1 is the design to obtain the activation estimate for trial 1 and has a regressor modeling that trial and a second regressor modeling all other trials. The estimate for β1 from this
first design is the activation for trial 1. This process is repeated N times to obtain estimates for all trials. The bottom table lists the regularization parameters used, when needed.
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Other	  Op.ons	  
•  3	  (LS	  but	  change	  regression	  structure)	  
–  Just	  get	  the	  peak	  (take	  TP	  at	  6s)	  
–  Just	  get	  peri-‐peak	  (take	  TPs	  at	  4-‐6s)	  
–  Separate	  GLM	  (1	  regressor	  for	  trial	  of	  interest,	  
everything	  else	  in	  nuissance)	  

•  3	  (addi.onal	  regulariza.on	  to	  change	  the	  
es.ma.on	  of	  the	  ridge	  parameter)	  
–  Par.al	  least	  squares	  
–  Support	  vector	  regression	  
–  Ridge	  regression	  (2x)	  



Although this does greatly reduce collinearity, slow event-related de-
signs are very inefficient for univariate analysis and also may tax the
subject's attention. The ultimate goal is to decrease the time between
trials (ISI), creating a design that is psychologically optimal while
retaining the ability to accurately estimate trial-specific activation pat-
terns. This will allow for more flexibility in the design of classification
studies, decreasing the amount of time the subject will spend in the
scanner as well as allowingmore stimuli to be presented to the subject.
Additionally, it is common to carry out secondary analyses on data for
studies that were not originally optimized for a classification analysis,
butmay have been optimizedwith other criteria inmind (e.g., detection
power). Finding a way to obtain trial-specific activations for faster
event-related designs will increase our ability to run secondary MVPA
analyses on the data.

In this study we compare eight models for estimating trial-specific
activation and examine the quality of the estimates aswell as evaluating
their performance in a classification analysis. The models (Fig. 1) are
briefly described here; further detail can be found in the Methods sec-
tion. Onemodel does not address collinearity, while 4 of the approaches
use regularization and 3 use strategies in regressor construction to re-
duce collinearity. Least squares estimation using the previously men-
tioned design matrix XS, referred to as LS-A (Least Squares — All), is
not expected to work well in the presence of collinearity. The four ap-
proaches with additional regularization include partial least squares
(PLS), support vector regression (SVR) and ridge regression using two
strategies for estimating the ridge parameter. These approaches intro-
duce bias in hopes of a beneficial decrease in the variance of the esti-
mates. The other 3 models are estimated using least squares but
attempt to reduce collinearity through the structure of the regressors.
Two of these models, Add6 and Add4–6, focus on capturing the peak
of the response by only modeling the time point(s) at 6 s or between
4 and 6 s after stimulus onset respectively. The third, LS-S (Least
Squares — Separate), runs a separate GLM for each trial where the
trial is modeled as the regressor of interest and all other trials are com-
bined into a single nuisance regressor.

Other studies involving the use of pattern classification for fMRI have
focused on different aspects of the classification analysis without much
attention spent on how the activation estimates are created for event-
related designs. Although some work has focused on how to best

summarize activation for blocked designs (Mourao-Miranda et al.,
2006), thework presented here is unique to event-related designs. Clas-
sification studies have also focused on feature selection, or reducing the
set of voxels used in the classification analysis to improve the classifica-
tion accuracy (Chen et al., 2006; DeMartino et al., 2008;Mourao-Miran-
da et al., 2006) as well as the performance of different classification
models (Carlson et al., 2003; Cox and Savoy, 2003; LaConte et al.,
2005; Misaki et al., 2010). Lastly, the use of different types of activation
estimates – such as usingmagnitude of the BOLD signal versus a t-statis-
tic as well as different strategies for normalizing the data – has been
compared for benefits in classification accuracy (Misaki et al., 2010).
The results from the present study can be combined with the insights
from these other studies to help create optimal data analysis strategies
for MVPA studies.

In what follows, we first outline the eight different estimation strat-
egies as well as the classification approach used to assess their perfor-
mance. The models are first applied to simulated data in order to
characterize the quality of the activation estimates (variability and cor-
relation with true values) and assess their classification performance
across different interstimulus interval lengths and noise levels. The
best-performing models are then applied to a real data set. We found
that the LS-S approach performed as well as or better than all of the
other approaches in both simulated and real data analysis.

Methods

Models considered

The estimation approaches considered here for obtaining trial-by-
trial estimates of BOLD activation are described in Fig. 1. All but one of
these approaches attempts to remedy the collinearity problem: the sim-
plest approach does not address collinearity and simply consists of the
least squares estimates of the general linear model Y=XSβ+!. The esti-
mate is given by β̂ ¼ X′SXSð Þ−1X′SY , where Y is the vector of the BOLD
response time series and XS is the design matrix of the form depicted in
the top left of Fig. 1 and β is the vector of trial-by-trial activation esti-
mates. This approach is referred to as LS-A, since least squares is used
and all parameters are estimated simultaneously. As mentioned above,
this model will most likely suffer from collinearity when stimuli are
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Fig. 1. The model estimation approaches considered for obtaining trial-by-trial parameter estimates. Five of the approaches (least squares, two versions of ridge regression, partial
least squares and support vector regression) used the design matrix shown on the top left, XS. This design matrix contains a single regressor for each trial (in this case 10) in the run,
where each regressor is an impulse function convolved with a double gamma HRF. The middle design corresponds to the Add6 model, which models each trial using an uncon-
volved boxcar function capturing the time point 6 s after the time of stimulus presentation. The last design illustrates the LS-S approach, where a trial-specific design matrix is
used to obtain the activation estimate for that trial. The design matrices contain two regressors, one for the trial of interest plus a second that models all other trials simultaneously.
So, XT1 is the design to obtain the activation estimate for trial 1 and has a regressor modeling that trial and a second regressor modeling all other trials. The estimate for β1 from this
first design is the activation for trial 1. This process is repeated N times to obtain estimates for all trials. The bottom table lists the regularization parameters used, when needed.

2637J.A. Mumford et al. / NeuroImage 59 (2012) 2636–2643

Least	  Squares-‐All	  
Ridge	  Regression	  (2x)	  
Par.al	  Least	  Squares	  

Support	  Vector	  
regression	  

Add	  6	   Least	  Squares-‐
Separate	  



Simula.on	  Analysis	  

•  Two	  task	  types	  
•  Outcome	  is	  cross-‐valida.on	  
– Train	  on	  run	  2	  and	  3;	  test	  on	  run	  1	  (I	  think)	  

•  500	  simula.ons	  
– 12	  different	  designs	  	  

•  Varied	  by	  SNR	  and	  collinearity	  
–  Shorter	  ITIs	  =	  more	  collinearity	  



Double	  Cross-‐Valida.on	  

trial type of the test data set (Test or run 1 in Fig. 2) and the classifi-
cation accuracy is the average of the classification accuracy for each
trial type. The entire process is then repeated 2 more times using all
possible combinations of assigning runs as test and training data,
after which the classification accuracies are averaged.

Real data: data description

The data used in this analysis were from an unpublished study of
mirror reading (Jimura et al., in preparation). Subjects were scanned
for 6 runs lasting 410 s, during each of which they were presented
32 plain words and 32 mirror-reversed words, varying in length
from four to seven letters. Subjects were instructed to read the
words presented and decide as quickly as possible whether the stim-
ulus was a living or non-living entity using a keypad button-box. Pre-
sentation of stimuli using Matlab was synchronized with the onset of
each functional scan to ensure accuracy of event-related acquisition.
Word-list order was counterbalanced across subjects, and word
length was counterbalanced within each list. The stimulus onsets
(interstimulus intervals) were also counterbalanced across subjects
and varied randomly for the purposes of the fMRI data acquisition.
The ISI has a minimum of 3 s and had an inter-quartile range of 3.8–
7.8 s over runs and subjects. Data were acquired on a Siemens Allegra
3T head-only scanner using a gradient echo EPI pulse sequence
(TR=2 s, TE=30 ms).

Eighteen healthy subjects were recruited for the study; four sub-
jects were excluded for the following reasons, respectively: exces-
sive head motion in the scanner, non-completion of study (which
involved additional training and scanning sessions following the ini-
tial session analyzed here), inadequate task performance, and struc-
tural abnormalities. This study used 6 runs of data for each subject,
with the exception of 4 subjects who only had 5 usable runs of
data. Only trials with accurate responses were included; there
were an average of 25 accurate responses to mirror-reversed
words and 29 accurate responses to plain words per run across all
runs.

Prior to applying the trial-specific estimation model, data pre-
processing was carried out in FEAT version 5.98, part of FSL. The fol-
lowing preprocessing operations were applied: image time series
were aligned using the MCFLIRT tool; the skull was removed from
the image using the brain extraction tool (BET); spatial smoothing
using a Gaussian kernel of FWHM 5 mm; grand-mean intensity

normalization of the entire 4D data set by a single multiplicative
factor; and highpass temporal filtering (Gaussian-weighted least-
squares straight line fitting with σ=32 s). Note that this same high-
pass filter was applied to the design matrix when estimating the trial-
by-trial estimates.

Real data: data analysis

The simulation studies revealed that ridge regression, PLS and
SVR performed similarly to either LS-A or Add4–6, and since they re-
quire the time-consuming step of running a double CV to select the
regularization parameters these 3 approaches were not considered
in the real data analysis. The real data analysis focused on the stan-
dard approach (LS-A), along with the best (LS-S) and worst (Add6)
performers from the simulation study. Additionally the Add4–6
model was studied. The motion parameters and other nuisance vari-
ables were included in the model when estimating the activation
patterns. A support vector machine approach was used in the classi-
fication analysis, implemented using the svm function (www.csie.
ntu.edu.tw/++cjlin/libsvm) of the R software package (www.r-
project.org/). The data are automatically scaled internally to have
zero mean and unit variance and the results are based on the radial
basis kernel, which requires two parameters, the cost parameter, C,
which is necessary in all SVM models as well as the parameter γ,
which is part of the formulation of the radial basis kernel. These pa-
rameters were set through a secondary leave-one-run-out CV, simi-
lar to that used in the simulation study. On average C was 5.06 and γ
was found to be 6.3×10−6 across all methods. We also ran the SVM
using a linear kernel, but the accuracy values were lower and more
variable than those using the radial basis kernel, so only the results
based on the radial basis kernel are reported here. Note that no fea-
ture selection was used in our classification analysis results reported
here. Although feature selection may improve the classification accu-
racy we found that it affected all approaches by increasing the clas-
sification accuracies in equal amounts. Since we were only interested
in comparing differences between classification accuracy we focused
on the simpler analysis where the secondary cross-validation was
only used to select the C and γ parameters.

Results

Simulation study: classification accuracy

The classification accuracies from the primary CV are shown in
Fig. 3 and the estimated parameters for the ridge-HKB approach and
other approaches that used the secondary CV are in Table 1. The
rows of Fig. 3 correspond to different noise levels and the columns
correspond to differing levels of collinearity according to the length
of the ISI (2 s, 4 s, 6 s, and 8 s on average). There are eight boxplots
for each noise/collinearity setting, corresponding to the eight trial-
specific activation estimation techniques described in Fig. 1. In gener-
al, across the 12 simulation setups, the regularized linear regression
approaches (Ridge, PLS and SVR) perform similarly. The modeling ap-
proaches that stand out as the best and worst are LS-S and Add6, re-
spectively, where Add6 estimates the trial's activation using the BOLD
magnitude of the TR 6 s after the stimulus presentation and LS-S was
the iterative modeling approach where each iteration models a single
trial as a regressor and all other trials as a second regressor. In general
the Add6 model performs very poorly, most likely a combination of
failure to capture the peak of the trial's response and failure to filter
out signal due to overlapping trials.

The LS-S approach tends to outperform all other approaches in low
noise, high collinearity settings (upper left panels of Fig. 3). As the ISI de-
creases, LS-S performs more similarly to the other approaches. Likewise,
as the noise increases, the performance of all approaches tends toward
chance and, with the exception of Add6, the methods tend to perform

Run 1 Run 2 Run 3

Parameter selection: 
Trial-specific model 

specific activation
Classification of trial-

estimation

Test A Train A
Test BTrain B

Use Test A&B results to select 
best regularization parameters

Test Train
Primary CV:  

patterns

Fig. 2. Illustration of the double cross-validation that was used in the simulation study.
The primary cross-validation was a leave-one-run-out CV across 3 runs, for the pur-
poses of obtaining classification accuracy reflecting the ability of the trial-by-trial pa-
rameter estimates to predict task type. One fold of the primary cross-validation is
illustrated here. It begins with the parameter selection CV, which is a 2-fold CV used
to select the regularization parameters used in ridge regression, PLS and SVR. Once
this 2-fold CV is carried out the trial-specific activations can be estimated for all 3
runs. Then the primary CV is carried out, training a classifier to predict trial type
using 2 runs of data and then testing this model on the test data.

2639J.A. Mumford et al. / NeuroImage 59 (2012) 2636–2643



Real	  Data	  Analysis	  

•  Read	  plain	  words,	  mirrored	  words,	  decide	  
whether	  it	  is	  living	  or	  non-‐living	  

•  Only	  used	  LS-‐A,	  Add6,	  Add4-‐6	  and	  LS-‐S	  
– From	  simula.on	  performance:	  LS-‐S	  >	  LS-‐A	  >	  Add6	  



Results:	  Simula.on	  

similarly. Notably, in the first row of the figure (noise sd=0.8) the accu-
racies for most methods increase considerably when the ISI is increased
from 2 s on average to 4 s on average, with the exception of LS-S,
which has similar accuracy levels for both ISIs, indicating a benefit to
the use of LS-S with faster ISIs.

The regularization parameter for ridge regression, λ (Table 1), de-
termined by the HKB approach tended to differ from the value found
by CV. Although the ridge parameter, λ, should decrease as the ISI in-
creases due to a smaller degree of collinearity, the HKB estimate does
not adjust accordingly and actually increases. Although the CV-based
λ estimates behave as we would expect, the overall impact on classi-
fication accuracy is minimal.

For short ISIs the LS-A approach is expected to perform the worst,
since it suffers the most from collinearity and does not employ any
regularization strategies. This is generally the case for the shortest
ISI tested, which lasted 2 s on average (U(0,4)), although in many in-
stances the Add6 model performed worse still.

Simulation study: properties of activation estimates

To understand why certain estimates of the trial-by-trial activation
performed poorly in the classification analysis we have calculated the
correlations of the estimates to the true value of the activation magni-
tudes in the simulation study (Fig. 4). The correlations for β1 and β2

were very similar and so they were averaged here. The patterns are
very similar to the accuracy patterns in Fig. 3, indicating that decreases
in accuracy were due to the activation estimates not closely representing
the true activation magnitudes. For example, the Add6 approach yielded
activation estimateswith among the lowest correlationswith the true ac-
tivationmagnitude and have the lowest classification accuracy. Although
stronger correlations are paired with higher classification accuracies in
our simulations, a strong correlation of the true and estimated activation
magnitude does not necessarily imply that the resulting classification ac-
curacy would be high, as the true activationmagnitudes themselvesmay
not perform well in a classifier depending on how variable they are and
how much they differ in magnitude between trial types.

The variances of the trial-by-trial estimates did not vary between
β1 and β2 and so they were averaged within each simulation. Fig. 5
shows these variances for all models. The LS-A model tends to have
the highest variance of all the approaches, which is not surprising
since the model estimates were unregulated and collinearity will in-
crease the variability of the estimates. This trend decreases with longer
ISI due to a diminished multicollinearity. In low noise cases the SVR es-
timates aremost variable, while in themediumand high noise cases the
LS-A approach produced estimates with the highest variability, which
indicates why both the correlation of the true to estimated activations
and classification accuracies are lower for LS-A compared to LS-S. Both
Add4 and Add4–6 have very low variability, but this property was not
beneficial for the Add6 estimates since the estimates were not repre-
sentative of the true activation magnitudes.

Real data

Based on the simulation results, the most interestingmodels to con-
sider for the real data analysis included LS-S, LS-A, Add4–6 and Add6.
Since Ridge, SVR and PLS tended to performed similarly to either LS-A
or Add4–6 and require the time-consuming step of running a double
CV to select the regularization parameters, they were not considered
for the real data analysis. Fig. 6 illustrates the balanced accuracies across
the 14 subjects from the 6-fold CV (5-fold in four cases) when classify-
ing whether the subject was viewing mirror-reversed or plain words
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Fig. 3. Accuracy results from simulation studies. Each simulation consisted of 500 iterations and 60 trials split randomly and evenly between two tasks. Each of the 12 sets of box-
plots contains the results from the eight different models outlined in Fig. 1 and arranged by decreasing levels of collinearity (left to right) and increasing noise (top to bottom).
When the noise is lower (top 2 rows) the Add6 model performs the worst across all levels of collinearity. For low noise, high collinearity cases (upper left) the LS-S model outper-
forms all other models. The solid horizontal line indicates chance (50%), while the dashed line indicates accuracy significantly better than chance according to the binomial
distribution.

Table 1
Regularization parameter estimates found for SVR, ridge regression and PLS. With the
exception of Ridge(HKB), all parameters were estimated in the secondary CV and
these are the average parameter values over the 500 iterations for each simulation
setup.

U(0,4) U(2,6) U(4,8) U(6,10)

SVR-!
Noise σ=0.8 0.466 0.503 0.494 0.483
Noise σ=1.6 0.537 0.562 0.539 0.565
Noise σ=3 0.595 0.631 0.659 0.661
SVR-C
Noise σ=0.8 2.840 0.496 0.318 0.277
Noise σ=1.6 0.708 0.195 0.159 0.149
Noise σ=3 0.301 0.134 0.120 0.118
Ridge(λ-HKB)
Noise σ=0.8 10.188 17.734 23.315 28.990
Noise σ=1.6 22.914 49.834 66.571 83.993
Noise σ=3 33.320 79.759 114.133 148.313
Ridge(λ-CV)
Noise σ=0.8 14.992 1.608 0.310 0.000
Noise σ=1.6 39.201 18.395 6.151 0.698
Noise σ=3 40.000 39.441 32.404 18.840
PLS-component number
Noise σ=0.8 8.095 12.314 8.709 6.807
Noise σ=1.6 2.051 8.009 8.268 7.635
Noise σ=3 2.000 3.638 4.683 6.013

2640 J.A. Mumford et al. / NeuroImage 59 (2012) 2636–2643



Results:	  Real	  Data	  

since the estimates are obtained using least squares and additional
parameters do not need to be estimated, as they do in ridge regres-
sion, PLS and SVR.

These results are important because they allow classification stud-
ies to be designed with shorter ISIs, which will improve the quality of
the data and reduce the cost of the study. For example, in our simula-
tions with 30 trials of each stimulus type, an ISI of 2 s compared to 4 s
on average produces runs of 4 and 8 min, respectively. Possibly more
useful is that LS-S may provide better results in secondary analyses
carried out on event-related fMRI data where the studies were not
originally designed for a classification analysis.

Although we have only compared these approaches for the use of
activation patterns in classification analyses, it is also likely that these
estimates would perform better in other MVPA applications including
pattern similarity analysis, such as those reported by Xue et al.
(2010). Likewise, in beta series correlation analyses (Rissman et al.,
2004) the LS-S estimates would presumably work better due to the
improvements in the trial-specific activation estimates.

Interestingly the relationship between the Add4–6 model and
other approaches in the real data analysis did not follow exactly the
same pattern as we found in the simulation study. Specifically the
Add4–6 model performed almost as well as the LS-S model and
slightly better than the LS-A model in the real data analysis, whereas
in the simulation study LS-A tended to have higher classification than
Add4–6. This is most likely due to variability in the true hemodynam-
ic response shape between the simulated and real data.

The current study focused on the use of the support vector classifier,
with the radial basis kernel, for the classification of trial type based on
activation estimates for the trials. Although we did also consider the
support vector classifier with a linear kernel, for all four estimate
types considered in the real data analysis (LS-S, LS-A, Add6 and Add4–
6) it did not perform aswell in terms of the magnitude of the classifica-
tion accuracies as well as the variance of the classification accuracies
across subjects. As explained in Pereira et al. (2009) the Gaussian
Naive Bayes classifier typically performs worse than logistic regression
or SVM classifiers when feature selection is not used since logistic re-
gression and SVM deal better with noisy data. Therefore, these results
may not hold for other classifiers, such as the GaussianNaive Bayes clas-
sifier, but an exhaustive study of this was beyond the scope of this pro-
ject. Althoughwe found the radial basis kernel worked better in our real
data analysis, it is recommend to try both the radial basis kernel and lin-
ear kernel for different data sets as the behavior may change.

In the present study, we used raw parameter estimates for subse-
quent classification analyses. Misaki et al. (2010) found that when
using the LS-A approach for obtaining activation patterns, it was ben-
eficial to use the t-statistics for the activation estimate rather than the
raw parameter estimates. Since the LS-S approach is also least squares
based, it would be easy to obtain t-statistics for use in classification;
future studies will need to verify whether or not the t-statistics per-
form better for LS-S as well. In comparison, ridge regression, PLS
and SVR do not have closed form solutions for test statistics corre-
sponding to the parameter estimates and thus it would not be
straightforward to apply them in this manner.

Although the classification model for the simulation study (logistic
regression) differed from the real data (support vector classification),
it is not expected that this had a strong influence on the results. Since
the simulation studywas focusing on a single voxel at a time, the logistic
regression model was the simplest, most intuitive model to use. For the
real data analysis the classification was based on the trial-by-trial esti-
mates across all voxels simultaneously, so support vector classification
was required to deal with thewide data problem (more predictive vari-
ables than observations). Due to the similarities in the real and simulat-
ed data analysis results, it is doubtful that the classification model
choice had any impact. The distribution of the ISI for the real data was
drawn from a truncated exponential distribution, with a minimum of
3 s and an inter-quartile range of 3.8–7.8 s. This meant our ISI setting
was somewhere between the middle two ISI setups considered in sim-
ulations (U(2,6) and U(4,8)). Also, ratio of activation to residual stan-
dard deviation in regions that were significantly active to either word
type was 4.66/0.75=6.21 for the mirrored trials and 2.22/0.75=2.96
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Fig. 6. Classification accuracies from the real data analysis. The Add6 accuracy was signif-
icantly lower than LS-S (p=0.0002, uncorrected) and Add4–6 (pb0.0001, uncorrected).
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Fig. 7. Classification accuracies from the real data analysis separated by stimulus type. Note that the classification accuracy increase for LS-S and Add4–6 compared to the other
methods, as shown in Fig. 6, is mostly due to an increase in the classification accuracy of the mirrored words.
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Take	  Home	  Points	  

•  Increase	  ITIs	  to	  decrease	  collinearity	  not	  super	  
important	  depending	  on	  SNR.	  

•  LS-‐S	  approach	  performs	  at	  least	  as	  well	  and	  
maybe	  befer	  than	  other	  analysis	  approaches.	  

•  Add6	  approach	  performed	  worst.	  



Implementa.on	  

•  Create	  one	  three	  column	  file	  for	  the	  trial	  of	  
interest	  and	  one	  that	  includes	  all	  the	  trials	  but	  
the	  trial	  of	  interest.	  You	  will	  need	  these	  two	  
files	  for	  each	  of	  your	  trials.	  
– Behavioral	  File:	  Example_run_file.ri	  
– Three-‐column	  script:	  three_column_itera.ve.ri	  



Behavioral	  File	  



FSL	  

•  Run	  your	  first	  levels	  as	  usual.	  
– Template	  file:	  ST_itera.ve_template.ri	  

	  



Example	  Outputs	  



FSL	  

•  Run	  your	  first	  levels	  as	  usual.	  
– Template	  file:	  ST_itera.ve_template.ri	  
– First-‐level	  script:	  first_level.ri	  

•  Run	  featquery	  using	  your	  ROI	  of	  interest	  on	  
your	  first	  levels	  (e.g.,	  the	  first	  level	  analysis	  
you	  ran	  for	  every	  single	  trial)	  
– Featquery_biac.ri	  

•  Consolidate	  your	  featquery	  trials	  as	  you	  would	  
normally	  

	  



Data	  Clean	  Up	  

•  Add	  mo.on	  parameters	  
•  Run	  regression	  diagnos.cs	  to	  find	  outliers	  
•  Get	  rid	  of	  trials	  where	  there	  was	  a	  bad	  
.mepoint	  
– Find_bad_.mepoint_final.m	  


