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In Multiple Sclerosis (MS), detection of T2-hyperintense white matter (WM) lesions on magnetic resonance
imaging (MRI) has become a crucial criterion for diagnosis and predicting prognosis in early disease. Auto-
mated lesion detection is not only desirable with regard to time and cost effectiveness but also constitutes
a prerequisite to minimize user bias. Here, we developed and evaluated an algorithm for automated lesion
detection requiring a three-dimensional (3D) gradient echo (GRE) T1-weighted and a FLAIR image at 3
Tesla (T). Our tool determines the three tissue classes of gray matter (GM) and WM as well as cerebrospinal
fluid (CSF) from the T1-weighted image, and, then, the FLAIR intensity distribution of each tissue class in
order to detect outliers, which are interpreted as lesion beliefs. Next, a conservative lesion belief is expanded
toward a liberal lesion belief. To this end, neighboring voxels are analyzed and assigned to lesions under cer-
tain conditions. This is done iteratively until no further voxels are assigned to lesions. Herein, the likelihood of
belonging to WM or GM is weighed against the likelihood of belonging to lesions. We evaluated our algo-
rithm in 53 MS patients with different lesion volumes, in 10 patients with posterior fossa lesions, and 18 con-
trol subjects that were all scanned at the same 3T scanner (Achieva, Philips, Netherlands). We found good
agreement with lesions determined by manual tracing (R2 values of over 0.93 independent of FLAIR slice
thickness up to 6 mm). These results require validation with data from other protocols based on a conven-
tional FLAIR sequence and a 3D GRE T1-weighted sequence. Yet, we believe that our tool allows fast and re-
liable segmentation of FLAIR-hyperintense lesions, which might simplify the quantification of lesions in basic
research and even clinical trials.

© 2011 Elsevier Inc. All rights reserved.
Introduction

Multiple Sclerosis (MS) is an inflammatory demyelinating disease of
the central nervous system that affects over 2.5 million people world-
wide and is one of the leading causes of serious neurologic disability
in young adults (Confavreux andVukusic, 2008;Weiner, 2009). The dis-
ease is characterized by unpredictable episodes of clinical relapses and
remissions followed by continuous progression of disability over time
(secondary progressive MS) in most instances (Compston and Coles,
2008; Noseworthy et al., 2000). Demyelinating lesions (plaques)within
cerebral white matter (WM) are the hallmark of MS and its detection
by T2-weighted magnetic resonance imaging (MRI) has become a
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crucial diagnostic criterion (Polman et al., 2011). Moreover, T2-
hyperintense lesion volume has been demonstrated to correlate with
severity of symptoms, progression of disability and gray-matter (GM)
atrophy (Bendfeldt et al., 2010; Chard et al., 2002; Fisher et al., 2008;
Fisniku et al., 2008). Accordingly, T2-hyperintense lesion volume has
been of interest in basic research and has been determined in most
pivotal trials on disease-modifying drugs since the late nineties
(Ebers, 1998; Jacobs et al., 2000; Kappos, 1998).

Automatization of T2-hyperintense lesion volumetry is desirable
with regard to time and cost effectiveness but also constitutes a pre-
requisite to minimize user bias. Up to now, a number of algorithms
have been proposed (Table 1) but no gold standard has been estab-
lished. Therefore, in the vast majority of clinical trials, lesions were
traced manually slice by slice — sometimes with the help of semi-
automated tools for contour detection.

Here, we aimed at the development and validation of an automated
algorithm for segmentation of T2-hyperintense WM lesions in MS
based on a T2-weighted fluid-attenuated (FLAIR) and a three-

http://dx.doi.org/10.1016/j.neuroimage.2011.11.032
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http://dx.doi.org/10.1016/j.neuroimage.2011.11.032
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Table 1
Studies on automated lesion segmentation in MS.

References in chronological order Method Sequences Validation technique Number of
patients/
controls

(Van Leemput et al., 2001) EM alg. with MRF and OD T1, T2, PD Manual segmentation 23 /
(Ferrari et al., 2003) SVM T1, T2, FLAIR Manual segmentation 18 /
(Anbeek et al., 2004) KNN T1, T2, PD, FLAIR Manual segmentation 19 /
(Ait-Ali et al., 2005) Robust EM, trimmed likelihood estimator and OD T1, T2, PD Simulated data (BrainWeb) / /
(Li et al., 2005) EM alg. with MRF T1, T2, FLAIR Visual inspection 6 2
(Wu et al., 2006) Supervised KNN classifier T1, T2, PD Manual segmentation 6 /
(Herskovits et al., 2008) Classification statistics based on training data T1, T2, FLAIR Manual segmentation 1
(Khayati et al., 2008) Adaptive mixture model FLAIR Manual segmentation 20 /
(Wels et al., 2008) Probabilistic boosting tree T1, T2, FLAIR Manual segmentation 6 /
(Freifeld et al., 2009) Constrained Gaussian mixture model and OD T1, T2, PD or

T1, T2, PD, FLAIR
Mainly simulated data (BrainWeb)
manual segmentation

? /

(Garcia-Lorenzo et al., 2009) Automatic multimodal graph cuts T1, T2, PD Simulated (BrainWeb)
and manual segmentation

10 /

(Akselrod-Ballin et al., 2009) Decision forest classifier based on training data T1, T2, PD
FLAIR

Manual segmentation 25
16

/

(Geremia et al., 2010) Spatial decision forests T1, T2, FLAIR Manual segmentation 20 /

Note. In two online libraries (http://apps.isiknowledge.com, http://www.ncbi.nlm.nih.gov/), we searched for the combination of the following terms: Multiple Sclerosis, MRI,
automated (or automatic), lesion. The retrieved articles including their references were then studied. alg., algorithm; EM, expectation maximization; KNN, K-nearest neighbor;
MRF, Markov random field; OD, outlier detection; SVM, support vector machine.
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dimensional (3D) gradient echo (GRE) T1-weighted sequence derived
from a 3 Tesla (T) scanner. Such protocols have increasingly been
used in clinical practice, since evidence suggests superiority of 3 T scan-
ners over those with lower field strength (Wattjes and Barkhof, 2009;
Wattjes et al., 2006a) and superiority of FLAIR sequences over conven-
tional T2-weighted sequences (Bakshi et al., 2001; Filippi et al., 1996;
Stevenson et al., 1997; Wattjes et al., 2006b; Woo et al., 2006).

Materials and methods

Subjects

The study was performed in accord with the Helsinki Declaration
of 1975 and approved by the local ethics committee. Beforehand,
written informed consent was obtained from the control subjects to
participate and from the patients to subject their MRI scans, acquired
in routine clinical practice, to scientific studies.

We obtained MRI scans from 18 control subjects (age in years:
23–58; median, 30; 32.6±10.6), and 52 MS patients (age in years:
23–64; median, 41; 32.6±11.4; EDSS: 0–4; median, 2). Five of the
52 MS patients were also included in another group of 10 MS patients
with posterior fossa lesions according to their medical records (age in
years: 24–64; median, 36; 37.9±13.1; EDSS: 0–4; median, 2).

Magnetic resonance imaging

All brain images were acquired on the same 3 T scanner (Achieva,
Philips, Netherlands). We used a 3D GRE T1-weighted sequence (ori-
entation, 170 contiguous sagittal 1 mm slices; field of view,
240×240 mm; voxel size, 1.0×1.0×1.0 mm; repetition time (TR),
9 ms; echo time (TE), 4 ms), and a 3D FLAIR sequence (orientation,
144 contiguous axial 1.5 mm slices; field of view, 230×185 mm;
voxel size, 1.0×1.0×1.5 mm; TR,104ms; TE, 140 ms; TI, 2750 ms).
For additional analyses (see Evaluation section), FLAIR images were
also resliced to 3 and 6 mm in axial and sagittal orientations.

Lesion segmentation algorithm

For better understanding, we give a conceptual overview of the
three major steps of our algorithm in this paragraph (Fig. 1). First (for
details see Preprocessing with already available software section), pre-
processing is performedwith the standard software of SPM8 and its ex-
tension VBM8. To surpass smoothing of the individual images by
warping, the algorithm operates in the space of the original T1-
weighted image, i.e. in native space. Each voxel of the individual native
T1-weigted image is assigned to one of the three tissue classes of GM,
WM, or CSF. The FLAIR image is bias-corrected for MR field inhomoge-
neity and coregistered to the T1-weighted image. Since a-priori proba-
bility of each voxel of belonging to WM, the tissue class containing the
lesions, is utilized later, the SPM tissue probability map of WM
(TPMWM) is warped into native space. Second (for details see Lesion
belief maps and initialization section), FLAIR intensity distributions
are calculated for each of the three tissue classes to detect FLAIR-
hyperintense outlierswhich are furtherweighed according to their spa-
tial probability of being WM. This results in lesion belief maps (BWM,
BCSF, BGM). Now, the three lesion beliefmaps are summedup (B). The bi-
nary version of the GM lesion belief map is used as a seed, the initial le-
sionmap (Linit). Third (for details see Lesion growing section), the lesion
growth model expands the Linit, a conservative assumption for lesions,
toward the lesion belief map (B), a liberal assumption for lesions. To
this end, neighboring voxels are analyzed and assigned to lesions
under certain conditions. This is done iteratively until no further voxels
are assigned to lesions. Herein, the likelihood of belonging toWMorGM
isweighed against the likelihood of belonging to lesions. Twomodel pa-
rameters had to be set (for details see Determination of the initial
threshold and of the final threshold section). The algorithm was pro-
grammed in MATLAB (www.mathworks.de/products/matlab/). We
provide a pseudo-code description of our algorithm in Appendix A1
and performance parameters in Appendix A2. In the following subsec-
tions, we describe our algorithm in detail. Alternatively, the reader
may continue with the Evaluation section.

Preprocessing with already available software
We use SPM8 (http://www.fil.ion.ucl.ac.uk/spm/) and its VBM8

toolbox (http://dbm.neuro.uni-jena.de/vbm). At option, VBM8 can
provide images of the same modality which are bias-corrected for
MR field inhomogeneity either in native space or normalized to MNI
space; further, partial volume estimate (PVE) images (Tohka et al.,
2004) can be generated which are either in native space or normal-
ized to MNI space. In this protocol, images are corrected for bias-
field inhomogeneity, registered using linear (12-parameter affine)
and nonlinear transformations, and tissue-classified into GM, WM,
and CSF within the same generative model (Ashburner and Friston,
2005). This segmentation procedure is further refined by accounting
for partial volume effects (Tohka et al., 2004), by applying adaptive
maximum a posteriori estimations (Rajapakse et al., 1997), and by
applying hidden Markov random field (MRF) model (Rajapakse
et al., 1997) as proposed recently (Lüders et al., 2009).

http://www.mathworks.de/products/matlab/
http://www.fil.ion.ucl.ac.uk/spm/
http://dbm.neuro.uni-jena.de/vbm
http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/
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Fig. 1. The flow diagram of the lesion segmentation algorithm is shown. Preprocessing with the standard software of SPM8 and VBM8 is illustrated in the gray box. At first, the individual
native T1 image is used to generate a partial volume estimate (PVE) label. To this end, some normalization is necessary. To surpass smoothing of the individual images by warping, the
algorithm operates in native space exclusively. Thus, preprocessing includes the coregistration of FLAIR images to T1 images, PVE label estimation but output in native space, as well as
inverse warping of the white matter (WM) tissue probability map (TPMWM) to native space by the use of the inverse deformation matrix derived from PVE label estimation. Next, FLAIR
intensity distribution is calculated for each of the three tissue classes to detect FLAIR-hyperintense outliers which are further weighed according to their spatial probability of beingWM
resulting in belief maps (BWM, BCSF, BGM). Now, the three lesion belief maps are summed up (B). The binary version (threshold κ=0.3) of the GM lesion belief map is used as initial lesion
map (Linit). Finally, the lesion growthmodel expands the Linit, a conservative assumption for lesions, toward the lesion belief map (B), a liberal assumption for lesions (see text for details).
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For tissue classification, the T1-weighted image is used to estimate
a PVE image in which a number in the range between 1 and 3 is
assigned to each voxel. In accordance with image intensity, the
integers (1, 2, 3) stand for CSF, GM and WM, respectively. Values be-
tween those integers indicate the partial volume effect. Of note, voxel
values are estimated primarily on the basis of intensity values. Yet a-
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priori (i.e. spatial) information on tissue-classes is used for scalp edit-
ing so that some normalization is necessary although our algorithm
only uses the PVE image in native space. For normalization, we
choose the option of low-dimensional warping since visual inspection
of the PVE images, normalized this way, did not yield a single case in
which MS lesions disturbed normalization. Next, the FLAIR image is
bias-corrected by the same routine of VBM8 and coregistered to the
native T1-weighted image by the standard routine of SPM8. Since a-
priori probability of each voxel belonging to WM, the tissue class con-
taining the lesions, is utilized later, the SPM tissue probability map of
WM (TPMWM) is warped into native space by the use of the inverse
deformation matrix derived from PVE label estimation. We will
refer to this image as native TPMWM.

Lesion belief maps and initialization
By the use of the PVE image, we estimate the distributions of FLAIR

intensity for each tissue class. Of note, we expect lesion voxels to be-
have as hyperintense outliers from these distributions. Let xi denote
the estimated PVE label of voxel i, we then assign a discrete label zi
to each voxel as follows:

zi ¼
CSF;
GM;
WM

if xib1:5
if 1:5≤ xib2:5
if xi≥2:5:

8<
: ð1Þ

Next, FLAIR images are scaled via voxel-wise division by the mean
FLAIR intensity of the GM class (zi=GM). Let y=(y1,…, yn) denote
the scaled FLAIR intensities. Further, we denote the means of y
along the three tissue classes by �yk, k∈{CSF.GM, WM}. The lesion be-
lief value for voxel i represents the amount of hyperintensity in terms
of the distance from the class mean �yk weighted by the estimated PVE
label and by the a-priori (i.e. spatial) probability for WM:

bk;i ¼ yi−�ykð Þþ � xi � Pr zi ¼ WMð Þ

Here yi−�ykð Þþ is yi−�yk if yi > �yk and zero otherwise and Pr(zi=
WM) is the probability that voxel i belongs to WM according to
the native TPMWM. In this way, we obtain lesion belief maps Bk=
{bk1,…, bkn} for all tissue classes k. Voxel values of BGM increase
with (1) a high a-priori (i.e. spatial) probability forWM, (2)medium in-
tensity at T1, and (3) hyperintensity at FLAIR. Hence, increasing BGM
values support the assumption that the respective voxel belongs to a
WM lesion. Similar interpretations can be made for BCSF. Voxel values
of BCSF increase with a high a-priori probability for WM, hypointensity
at T1, and hyperintensity at FLAIR. Hence, increasing BCSF values support
the assumption that the respective voxel belongs to a WM lesion
(“black holes”). Likewise, voxel values of BWM increase with a high a-
priori probability for WM, hyperintensity at T1, and hyperintensity at
FLAIR. Hence, increasing BWM values support the assumption that the re-
spective voxel belongs to a WM lesion (“dirty WM”). Besides the lesion
belief maps for the three tissue classes, we compute a total lesion belief
map B={b1,…, bn} by summing up the three maps: bi=bCSF,i+bGM,i+
bWM,i.The lesion belief map B can be interpreted as a liberal assumption
of lesion voxels.

The proposed lesion growth algorithm requires initialization, i.e.
seed regions from where the lesions are expanded. Since extensive
preliminary experiments and analyses did not yield lesions without
any part assigned to GM according to the PVE label, we choose BGM
for initialization of lesions after application of the threshold κ so
that we obtain the initial lesion map Linit={linit, 1,…, linit,n} by

linit;i ¼ 1⇔bGM;i > κ :

This map can be interpreted as a conservative assumption of le-
sion voxels. Since the choice of the threshold κ is potentially critical,
we investigate the impact κ on the final segmentation in the
Evaluation section.

Lesion growing
Now, the lesion growth model expands the Linit, a conservative as-

sumption for lesions, toward the lesion belief map (B), a liberal as-
sumption for lesions. Each voxel in the neighborhood of the
initialized lesions is labeled lesion (Les) or other. This latter class con-
sists of the three main tissue classes CSF, GM and WM. Thus, the dis-
crete label zi for voxel i can be either Les or other. We approximate the
distribution of Les by a gamma distribution with shape and scale pa-
rameters α and β, respectively, and the distribution of other by a mix-
ture of three Gaussians:

pother yijθð Þ ¼ ∑
k
πk � ϕ yijμk; σ

2
k

� �
:

In this notation, ϕ stands for the probability density function of the
Gaussian (normal) distribution with mean μk and variance σk

2 and πk
is the proportion of the kth class. The vector θ collects the parameters
μk and σk

2 for all tissue classes. Since the classification of voxel i in re-
spect to the three tissue classes CSF, GM, and WM is known from
Eq. (1), the unknown parameters in θ can be estimated using the
maximum likelihood estimators:

μ̂ k ¼
1
nk

∑
i:zi¼k

yi σ̂ 2
k ¼ 1

nk−1
∑
i:zi¼k

yi−μ̂ kð Þ2 :

The mixture proportions are estimated byπ ̂
k ¼ nk=nwhere n is the

total amount of brain voxels that belong to either CSF or GM or WM.
The parameters of the gamma distribution are also estimated by max-
imum likelihood as it is implemented in the MATLAB function gamfit.
Next, we describe the way in which the initialized lesions are allowed
to grow toward the final lesion map.

We use an iterated growth algorithm. In each iteration, voxels that
share a common border with a lesion voxel are considered to be a le-
sion. Instead of accepting or rejecting the proposed value (zi=Les)
the algorithm assigns the following value to the ith voxel:

πLes
i ¼ Pr zi ¼ Lesð Þ ¼ min 1;

pLes yijα ̂ t−1ð Þ
; β ̂ t−1ð Þ� �

� bi
pother yijθ ̂ t−1ð Þ

� �
0
@

1
A ð2Þ

Here, i stands for indices of voxels with at least one neighbor j
with πjLes>0. The value bi in Eq. (2) ensures that a lesion could only
grow along those voxels which have a positive lesion belief value.
With other words, lesions are only allowed to grow within our liberal
lesion assumption. After each iteration, the parameters in θ and α and
β are re-estimated. For the estimation of α and β only those voxels
with πiLes≥0.5 are considered. Likewise, the updating of θ ̂ is based
on voxels with πiLesb0.5. For initialized lesion voxels, we set πiLes=1.
The algorithm stops when no more voxels with πiLes>0.01 are ob-
served. This results in a lesion probability map. Next, we expand our
algorithm by incorporation of the information of neighboring voxels.

Assuming that a voxel, which is completely surrounded by lesion
voxels, is more likely to be part of a lesion than of the other classes,
we utilize a MRF. We will briefly summarize the important aspects
of MRFs that have been extensively reviewed elsewhere (Winkler,
2003). In a random field, the labels z=(z1,…, zn) are viewed as a re-
alization of a collection of random variables Z=(Z1,…, Zn) in which
each random variable has the domain L, or L={Les, other} in this
case. Z is a MRF if the following two conditions are met

1. p(z)>0 for all possible realizations z,
2. p(zi|z|zi)=p(zi|zNi

)
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While the first assumption is required for technical reasons, the
second states that the probability of zi, given all other labels, depends
only on voxels that are in the neighborhood Ni of zi. Here, zNi

is the set
of voxels that are in the neighborhood Ni, zNi

={zi′|i′∈Ni}. According
to the Hammersley–Clifford-Theorem (Hammersley and Clifford,
1971), a MRF is equivalent to a Gibbs Random Field. Thus, its distri-
bution follows a Gibbs distribution and the conditional distribution
of zi for a given neighborhood can be written as

p zijzNi

� �
¼

exp −U zijzNi

� �n o

∑k∈L exp −U kjzNi

� �n o : ð3Þ

Here, U(k|zNi
) is the so-called energy function that is primarily

responsible for the resulting segmentation. One simple choice for
this energy function leads to the Ising model that has been extensive-
ly studied in the context of brain image segmentation by others
(Zhang et al., 2001; Woolrich et al., 2005):

U kjzNi

� �
¼ φ ∑

j∈Ni

I zj≠zi
� �

ð4Þ

in which I(a) is the indicator function that is 1 if statement a is true
and 0 otherwise. This energy function favors the segmentation of
voxel i as a lesion if more voxels in Ni are already marked as a lesion.
Instead of discrete labels the proposed algorithm produces values
π1Les,…, πnLes in the interval [0,1]. Thus, integration of energy function
(4) in our algorithmwould require another threshold to produce a bi-
nary lesion map. To address this problem, we modify energy function
(4) by using the probabilities of the neighboring voxels instead of the
discrete labels:

U πLes
i jπLes

Ni

� �
¼ φ ∑

j∈Ni

1−πLes
j

� �
: ð5Þ

We follow the choice of others (Khayati et al., 2008; Li et al., 2005;
Zhang et al., 2001) and choose φ=1. To include the MRF in the lesion
growth model, we use Eq. (3) as additional information and expand
Eq. (2) to

πLes
i ¼min 1;

pLes yijα ̂ t−1ð Þ
; β ̂ t−1ð Þ

� �
� bi � exp −∑j∈Ni

1−πLes
j

� �� �

pother yijθ ̂ t−1ð Þ
� �

� exp −∑j∈Ni
πLes
j

� �
0
@

1
A:

Determination of the initial threshold and of the final threshold
The initial threshold κ is a cutoff that produces the initial lesion

map, Linit, from the GM lesion belief map, BGM (see Preprocessing
with already available software section). In detail, values near
0 imply many voxels (all voxels of GM with a TPMWM value over
0 and with a FLAIR intensity value above GM average) whereas
values around 1 imply a very conservative initialization. We tested
the images of all patients with values of κ ranging from 0.05 to
0.95 with an increment of 0.05 (Fig. 2A). Applying values below 0.1
led to identification cortical hyperintensities which are inherent to
FLAIR images whereas lesions were missed at values above 0.8. In
conclusion, the effect of different κ values seemed to be limited in
the range from 0.1 to 0.8. Yet, we analyzed the influence of κ on
the agreement with manual segmentation (see Evaluation section)
as measured with the Dice coefficient (DC). As shown in Fig. 2A,
there is a plateau of DC values for κ values between 0.25 and 0.4.
Eventually, we choose the value of 0.3 for κ, as it goes along with
the greatest mean, the greatest minimum and the smallest band-
width of DCs.

To enable comparison with manual segmentation (see Evaluation
section), the lesion probability maps must be transformed into binary
maps. To this end, we chose the threshold of 1.00. The distribution of
all voxels with lesion probability greater than 0 across all subjects
(Fig. 2B) strongly suggested this threshold since there was a sharp in-
crease in frequency of voxel values in the range from >0.95 to ≤1.00
compared to voxel values in the range from >0.90 to ≤0.95; further,
of the latter class, 99.65% of the voxel values were 1.00.

Evaluation

Since no gold standard for segmentation of T2-hyperintense le-
sions exists, we compared our algorithm with a semi-automatic man-
ual tracing pipeline, which is based on commercially available
software (Amira 5.3.3, Visage Imaging, Inc.) and which has been
applied for basic research studies (Bendfeldt et al., 2010) and clinical
trials (Li et al., 2006). At first, the manual segmentation was indepen-
dently performed by two investigators, who were blinded to the
study group. Then, a difference image of the two binary lesion maps
was generated for each subject and both experts together decided
which differences were assigned to lesions or not.

We performed a correlation and regression analysis to compare
the volumetric agreement between automated and manual segmen-
tation. For better estimation of intercept, slope, and R2, we included
the data of our control subjects. Since 3D acquisition of FLAIR se-
quences has not been used commonly, we repeated estimation of
R2 after reslicing of the FLAIR images to 3 and 6 mm slice thickness
in sagittal and axial orientations, respectively.

To determine agreement between automatic and manual segmen-
tation, we used standard validation techniques (Anbeek et al.,
2004; Ashburner and Friston, 2005). We extracted the true posi-
tives (TP) and true negatives (TN) as well as the false positives
(FP) and false negatives (FN). Then, we calculated the similarity
measures of sensitivity (SE), SE=TP/(TP+FN), specificity (SP),
SP=TN/(TN+FP), and accuracy (AC), AC=(TN+TP)/(TN+TP+
FP+FN). Furthermore, we calculated the Dice coefficient (DC),
which equally weighed the number of false negatives and false
positives without accounting for true negatives (Dice, 1945;
Zijdenbos et al., 1994):

DC ¼ 2⋅TP
2⋅TPþ FPþ FN

:

All of these similarity measures have values between 0 and 1 with
higher values indicating better quality.

Moreover, we analyzed a group of 10 MS patients with posterior
fossa lesions and 18 control subjects.

Results

Based on T1-weighted and FLAIR images, T2-hyperintense WM
lesions were segmented. Correlation analysis of lesion volumes (52
MS patients and 18 control subjects) derived from automated seg-
mentation with those derived from manual tracing yielded excellent
results with R2 values greater than 0.93 irrespective of orientation
and slice thickness of the FLAIR sequence (Fig. 3, 3 mm slice thick-
ness not shown). The slope of the regression line of 0.948 did
not differ significantly from 1.0 (95% confidence interval, 0.892 to
1.004) and the intercept of −0.154 not from 0 (95% confidence
interval, −1.04 to 0.732). Moreover, a high degree of agreement be-
tween manual tracing and automated segmentation was demon-
strated with regard to sensitivity, specificity, accuracy, and DC
(Table 2). To further evaluate differences between both methods
with respect to size and location of the lesions, we determined the
DC in the 52 MS patients and related them to the lesion volume in-
dicating decreasing DCs with decreasing lesion volume (Fig. 4).
However, in the patient group, 71% (n=37) showed an excellent
DC of greater than 0.7 (see Fig. 5 for 2 examples). Of the remaining
29% (n=15), 10% (n=5) had a DC below 0.6. Of the latter, the
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lowest DC observed was 0.46 (Fig. 6, Panel A) and the highest lesion
volume 13.44 ml (Fig. 6, Panel B). Analysis of posterior fossa lesions
from 10 MS patients yielded that our algorithm detected 11 of 13
posterior fossa lesions and 85% of the lesion volume (overall sensi-
tivity, 0.85; overall DC, 0.94) but no false positive lesions. In the con-
trol group, hyperintense foci volume ranged from 0.0 to 1.53 ml
(0.25-Quantil, 0.029 ml; median, 0.058 ml; 0.75-quantil, 0.176 ml)
and was almost exclusively limited to anterior and posterior peri-
ventricular capping, as well as septal hyperintensity as illustrated
by the images of the control subject with the highest hyperintense
foci volume (Fig. 6, Panel C).
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Discussion

We developed and evaluated an algorithm for automated segmen-
tation of T2-hyperintense lesions in MS. We will review the strategy
of our algorithm, assess the results of its evaluation, and, finally, spec-
ulate on its potential opportunities.

Our algorithm (Fig. 1) requires high-resolution T1-weighted im-
ages, which have been regarded most suitable for VBM (Ashburner
and Friston, 2000) and which have become broadly available not
only in neuroimaging research but also in clinical practice. It also re-
quires FLAIR images, which have increasingly been used in MRI
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Table 2
Statistics of similarity between automated segmentation and manual tracing derived from 53 MS patients.

Lesion
volume

Sensitivity
TP/(TP+FN)

Specificity
TN/(TN+FP)

Accuracy
(TN+TP)/(TN+TP+FN+FP)

Dice coefficient
2TP/(2TP+FP+FN)

(ml) (min. mean max.) (min. mean max.) (min. mean max.) (min. mean max.)
b5 0.4289 0.7332 0.9673 0.9997 0.9999 1.0000 0.9995 0.9998 1.0000 0.4658 0.6665 0.8025
5–10 0.3889 0.7592 0.9497 0.9994 0.9998 1.0000 0.9990 0.9995 0.9999 0.5243 0.7594 0.8910
10–15 0.7359 0.8870 0.9655 0.9991 0.9996 0.9999 0.9986 0.9993 0.9997 0.6738 0.8157 0.8727
>15 0.9012 0.9494 0.9841 0.9990 0.9994 0.9997 0.9990 0.9993 0.9997 0.7838 0.8498 0.9253
Total 0.3889 0.8033 0.9841 0.9990 0.9997 1.0000 0.9986 0.9995 1.0000 0.4658 0.7531 0.9253

Note. FN, false negative; FP, false positive; min., minimum; max., maximum; TN, true negative; TP, true positive.
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protocols for MS patients (Filippi et al., 1996; Stevenson et al., 1997;
Wattjes et al., 2006b). Further, T1-weighted images were based on a
GRE sequence as commonly applied at 3 T. In preliminary experi-
ments, we failed to establish a robust segmentation of MS lesions
from a single sequence since the algorithms applied attributed a con-
siderable number of voxels to the lesion compartment in any case
which resulted in tremendous false positive misclassification of vox-
els to the lesion class especially in patients with low lesion volume
and also in control subjects. Inspired by van Leemput et al. (Van
Leemput et al., 2001), we surpassed lesion misclassification by incor-
porating two sequences in our algorithm. At first, we assigned all vox-
els to one of the three tissue classes of GM, WM, and CSF by the use of
PVE labels derived from T1-weighted images, then, estimated the dis-
tribution of FLAIR intensities for each tissue class separately, and, fi-
nally, detected FLAIR hyperintense outliers within each tissue class.
This way, the number of voxels correctly assigned to lesions can
vary from zero to large values. To account for variable intensity with-
in FLAIR images with regard to both normal tissue and lesions, we
created an iterative algorithm that expanded the lesion belief from a
conservative assumption toward a liberal assumption by voxel-wise
weighed the likelihood of belonging to gray or white matter against
the likelihood of belonging to lesions. Further, a hidden MRF segmen-
tation model as well as a priori knowledge on WM location was
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Fig. 4. Dice coefficients (DCs) of 52 patients are plotted over lesion volumes derived
from manual tracing. The points indicated by numbered arrows correspond to Panels
of Figs. 5 and 6.
incorporated. It may seem surprising that our algorithm starts with
the binary lesion belief map derived from the GM tissue class since
this implies the assumption of, at least, some T1-hypointense voxels
within every lesion. In contrast, evidence suggests that not all T2-
hyperintense MS lesions are T1-hypointense (Bagnato et al., 2003;
Sahraian et al., 2010). However, respective studies on these T1-
hypointense lesions, also called black (or dark) holes, have almost ex-
clusively been performed at field strengths of up to 1.5 T with turbo
spin echo sequences whereas we applied a GRE sequence at 3 T and
did not observe lesions without a T1-hypointense part. Of note, the
initial lesion estimate is allowed to expand toward voxels, which
are not T1-hypointense so that a lesion must only display a T1-
hypointense part rather than complete T1-hypointensity. Based on
our experience of possibly tremendous misclassification particularly
in patients with low lesion volume, we also evaluated our algorithm
with real data including control subjects, and patients with lesion vol-
umes ranging from low to high.

Intriguingly, evaluation of an algorithm on MS lesion segmenta-
tion is hampered by the lack of a commonly accepted gold standard
so that we compared the results derived from our algorithm with
those derived from manual tracing by the use of a contour detection
tool as suggested by others (Bendfeldt et al., 2010; Li et al., 2006).
Mere correlation analyses of both methods showed excellent results
(Fig. 3). The high R2 value indicates that both results share more
than 93% of their variability. Furthermore, neither the slope differed
significantly from 1 nor the intercept from zero suggesting that the le-
sion extent determined by our algorithm largely resembles what an
experienced examiner assigns to be a lesion. Yet mere correlation
measures of global lesion volumes are insufficient for evaluation
since they measure association of overall volume but not spatial
agreement (Bartko, 1991). Therefore, we calculated the standard val-
idation parameters of sensitivity, specificity, accuracy, and Dice coef-
ficient (Table 2). Of note, the validation parameters as determined
here are based on volumes, i.e. 3D data, so that they may seem to un-
derstate the quality of our algorithm. For example, since lesion bor-
ders are often fuzzy, it is well conceivable that the radius of a small
lesion is measured to be 3 mm by the algorithm under investigation
and 4 mm by the algorithm taken as the gold standard resulting in a
sensitivity of 0.42 (33/43). This value nearly equals the lowest sensi-
tivity measured in our patients (0.43); hence, sensitivity of our algo-
rithm can be regarded to be very good. On the other hand, the
measures of specificity and accuracy are excellent with regard to
the mere numbers but still of little value since these parameters are
strongly influenced by the number of true negatives, which is inher-
ently very large as is the volume of the whole brain compared to
the lesion volume. Only the DC equally weighed the number of false
positives and false negatives without accounting for the absolute
number of true negatives so that this similarity measure seems
most suitable to evaluate the overall quality of our lesion segmenta-
tion algorithm. Nevertheless, the DC has two limitations. 1) In our
study, DC determination becomes more critical with decreasing le-
sion volume which was also reported by others (Anbeek et al.,
2004; Wu et al., 2006). This is well conceivable assuming that lesion
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Fig. 5. Exemplary lesion segmentation is displayed from two MS patients with Dice coefficients over 0.7 (Panels A and B). Two axial slices are shown for each patient (upper row,
FLAIR images; middle row, lesion maps; lower row, T1-weighted images). Panel letters correspond to arrows in Fig. 4. Lesion volumes and Dice coefficients are given at the bottom.
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borders are determined with equal absolute errors irrespective of le-
sion size. This is likely to apply for our algorithm and, possibly even
more so, for manual tracing (Woo et al., 2006) as also illustrated by
our outlier patients (arrows in Fig. 4, Panels A and B of Fig. 6) in
whom low DC values result from both false positives and false nega-
tives. Further, in the extreme case, in which no lesion exists and no le-
sion is detected, as was the case in 1 of our 18 control subjects, the DC
is not even defined (division by zero), although the result is perfect.
2) Apart from the fact that higher DC values imply better agreement,
no commonly accepted rules on the interpretation of the DC exist.
Some authors regard DC values over 0.7 as “excellent” (Anbeek et
al., 2004; Bartko, 1991) others regard DC values over 0.4 as “moder-
ate”, over 0.6 as “substantial”, and over 0.8 as “almost perfect”
(Landis and Koch, 1977) while others emphasize that “conventional
interpretative guidelines” may be misleading as DC values “obtained
from samples with different base rates may not be comparable”
(Uebersax, 1987). In addition, we evaluated our algorithm separately
with regard to lesions in the posterior fossa because two studies
found FLAIR imaging to be less sensitive here (Filippi et al., 1996;
Stevenson et al., 1997). Although this finding lacked significance in
a later study at 3 T (Wattjes et al., 2006b), we speculated that difficul-
ties in detecting posterior fossa lesions could come more into play
when applying an automated tool which was the case to some degree
as 2 of 13 lesions were missed. Yet our patients with posterior fossa
lesions were selected according to their medical records which were
also based on conventional T2-weighted images. Our examiners
may have detected posterior fossa lesions more easily at FLAIR images
knowing that lesions are likely to exist. Hence, sensitivity values for
posterior fossa lesions possibly reflect lower sensitivity of FLAIR com-
pared to conventional T2-weighted sequences to some degree. More-
over, we applied our algorithm in 18 control subjects. Here, the
hyperintensities identified were almost exclusively limited to anteri-
or and posterior periventricular capping, as well as septal hyperinten-
sity. These results are well in accordance with a study on normal
findings on FLAIR images at 3 T (Neema et al., 2009). In conclusion,
our degree of agreement with manual tracing is remarkably good
given that most DC values exceeded 0.7, that the DC values below
0.6 were observed almost exclusively in patients with low lesion vol-
ume, that most posterior fossa lesions were detected, and that no
misclassification occurred in control subjects.

Finally, we repeated our evaluation analyses with the same images
after reslicing of the FLAIR images to larger slice thickness at different
orientations, since 3D FLAIR sequences have not been broadly estab-
lished. This yielded highly comparable R2 values. These results
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L ¼ Linit

DO WHILE stopping criterion not satisfied
FOR all voxels i with πiLes=0 that have at least one voxel in

their neighborhood Ni with πjLes>0, j∈Ni

Les
pLes yijα̂ t−1ð Þ

; β ̂ t−1ð Þ
� �

� bi � exp −∑j∈Ni
1−πLes

j

� �� �0 1
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suggest that our algorithm may also operate well on data derived
from protocols of other 3 T scanners based on a 3D GRE T1-
weighted and a conventional FLAIR sequence. In this way, our tool
may help to eventually take advantage of modern MRI protocols for
MS patients in basic research and even clinical trials. However,
these potential opportunities require validation with data from
other protocols based on a conventional FLAIR sequence and a 3D
GRE T1-weighted sequence at 3 T. Currently, we are programming
an SPM toolbox of our algorithm, including the opportunity to adapt
κ, which will be freely available to the scientific community.

In summary, we have developed a promising tool for automated
detection of T2-hyperintense lesions in MS based on a modern 3 T
MRI protocol including a 3D GRE T1-weighted and a FLAIR sequence.
πi ¼ min 1;
pother yi jθ ̂ t−1ð Þ

� �
� exp −∑j∈N i

πLes
j

� �@ A

END FOR
UPDATE θ̂, α̂ and β̂
UPDATE stopping criterion
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Appendix A1. Pseudo-code description of the lesion
growth algorithm
with

B: lesion belief map with values bi, i=1,…, n (Lesion belief
maps and initialization section)

yi: normalized FLAIR intensity of voxel i (Lesion belief maps
and initialization section)
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pLes: gamma probability density function for the lesion class
with shape and scale parameters alpha and beta, respec-
tively (Lesion growing section)

pother: mixture of three Gaussians for the other tissue classes
(CSF, GM and WM) with parameter vector θ= {μCSF, μGM,
μWM, σCSF

2 , σGM
2 , σWM

2 } (Lesion growing section)
Linit: initialized lesion map (Lesion belief maps and initialization

section)
L: lesion probability map with values πiLes, i=1,…, n
Ni: first order neighborhood of voxel i
Stopping criterion: maximal number of iterations or greatest new le-

sion probability b0.01.

Appendix A2. Performance parameters

The algorithm performs well on a computer with a 3.2 GHz pro-
cessor and 8 GB RAM. Preprocessing by SPM8 and VBM8 takes
about 10 min, the lesion growth algorithm another 2–3 min depend-
ing on the number of iterations. In our analysis, the median number of
iterations was 16, the maximum 50. We assume that performance is
similar on computers with less memory capacity and processing
power. However, we recommend the use of at least 2 GB RAM.

References

Ait-Ali, L.S., Prima, S., Hellier, P., Carsin, B., Edan, G., Barillot, C., 2005. STREM: a
robust multidimensional parametric method to segment MS lesions in MRI.
In: Duncan, J.S., Gerig, G. (Eds.), Medical Image Computing and Computer-Assisted
Intervention — Miccai 2005, pp. 409–416. Pt 1.

Akselrod-Ballin, A., Galun, M., Gomori, J.M., Filippi, M., Valsasina, P., Basri, R., Brandt, A.,
2009. Automatic segmentation and classification of multiple sclerosis in multi-
channel MRI. IEEE Trans Biomed Eng 56, 2461–2469.

Anbeek, P., Vincken, K.L., van Osch, M.J., Bisschops, R.H., van der Grond, J., 2004. Probabilis-
tic segmentation of white matter lesions in MR imaging. Neuroimage 21, 1037–1044.

Ashburner, J., Friston, K.J., 2000. Voxel-based morphometry—the methods. Neuroimage
11, 805–821.

Ashburner, J., Friston, K.J., 2005. Unified segmentation. Neuroimage 26, 839–851.
Bagnato, F., Jeffries, N., Richert, N.D., Stone, R.D., Ohayon, J.M., McFarland, H.F., Frank,

J.A., 2003. Evolution of T1 black holes in patients with multiple sclerosis imaged
monthly for 4 years. Brain 126, 1782–1789.

Bakshi, R., Ariyaratana, S., Benedict, R.H., Jacobs, L., 2001. Fluid-attenuated inversion
recovery magnetic resonance imaging detects cortical and juxtacortical multiple
sclerosis lesions. Arch. Neurol. 58, 742–748.

Bartko, J.J., 1991. Measurement and reliability: statistical thinking considerations.
Schizophr. Bull. 17, 483–489.

Bendfeldt, K., Blumhagen, J.O., Egger, H., Loetscher, P., Denier, N., Kuster, P., Traud, S.,
Mueller-Lenke, N., Naegelin, Y., Gass, A., Hirsch, J., Kappos, L., Nichols, T.E., Radue,
E.W., Borgwardt, S.J., 2010. Spatiotemporal distribution pattern of white matter
lesion volumes and their association with regional grey matter volume reductions
in relapsing–remitting multiple sclerosis. Hum. Brain Mapp. 31, 1542–1555.

Chard, D.T., Griffin, C.M., Parker, G.J., Kapoor, R., Thompson, A.J., Miller, D.H., 2002. Brain
atrophy in clinically early relapsing–remittingmultiple sclerosis. Brain 125, 327–337.

Compston, A., Coles, A., 2008. Multiple sclerosis. Lancet 372, 1502–1517.
Confavreux, C., Vukusic, S., 2008. The clinical epidemiology of multiple sclerosis.

Neuroimaging Clin. N. Am. 18, 589–622 ix-x.
Dice, L.R., 1945. Measures of the amount of ecologic association between species.

Ecology 26, 297–302.
Ebers, G.C., 1998. Randomised double-blind placebo-controlled study of interferon

beta-1a in relapsing/remitting multiple sclerosis. PRISMS (Prevention of Relapses
and Disability by Interferon beta-1a Subcutaneously in Multiple Sclerosis) Study
Group. Lancet 352, 1498–1504.

Ferrari, R.J., Wei, X., Zhang, Y., Scott, J.N., Mitchell, J.R., 2003. Segmentation of multiple
sclerosis lesions using support vector machines. Proceedings of SPIE 5032, 16–26.

Filippi, M., Yousry, T., Baratti, C., Horsfield, M.A., Mammi, S., Becker, C., Voltz, R., Spuler,
S., Campi, A., Reiser, M.F., Comi, G., 1996. Quantitative assessment of MRI lesion
load in multiple sclerosis, a comparison of conventional spin-echo with fast
fluid-attenuated inversion recovery. Brain 119 (Pt 4), 1349–1355.

Fisher, E., Lee, J.C., Nakamura, K., Rudick, R.A., 2008. Gray matter atrophy in multiple
sclerosis: a longitudinal study. Ann. Neurol. 64, 255–265.

Fisniku, L.K., Brex, P.A., Altmann, D.R., Miszkiel, K.A., Benton, C.E., Lanyon, R., Thompson,
A.J., Miller, D.H., 2008. Disability and T2 MRI lesions: a 20-year follow-up of patients
with relapse onset of multiple sclerosis. Brain 131, 808–817.

Freifeld, O., Greenspan, H., Goldberger, J., 2009. Multiple sclerosis lesion detection
using constrained GMM and curve evolution. Int J Biomed Imaging 2009, 715124.

Garcia-Lorenzo, D., Lecoeur, J., Arnold, D.L., Collins, D.L., Barillot, C., 2009. Multiple scle-
rosis lesion segmentation using an automatic multimodal graph cuts. Med Image
Comput Comput Assist Interv 12, 584–591.
Geremia, E., Menze, B., Clatz, O., Konukoglu, E., Criminisi, A., Ayache, N., 2010. Spatial
decision forests for MS lesion segmentation in multi-channel MR images. Med
Image Comput Comput Assist Interv 13, 111–118.

Hammersley, J.M., Clifford, P., 1971. Markov fields on finite graphs and lattices.
Herskovits, E.H., Bryan, R.N., Yang, F., 2008. Automated Bayesian segmentation of micro-

vascular white-matter lesions in the ACCORD-MIND study. Adv. Med. Sci. 53,
182–190.

Jacobs, L.D., Beck, R.W., Simon, J.H., Kinkel, R.P., Brownscheidle, C.M.,Murray, T.J., Simonian,
N.A., Slasor, P.J., Sandrock, A.W., 2000. Intramuscular interferon beta-1a therapy
initiated during a first demyelinating event in multiple sclerosis, CHAMPS Study
Group. N. Engl. J. Med. 343, 898–904.

Kappos, L., 1998. Placebo-controlled multicentre randomised trial of interferon beta-1b
in treatment of secondary progressive multiple sclerosis. European Study Group on
interferon beta-1b in secondary progressive MS. Lancet 352, 1491–1497.

Khayati, R., Vafadust, M., Towhidkhah, F., Nabavi, M., 2008. Fully automatic segmenta-
tion of multiple sclerosis lesions in brain MR FLAIR images using adaptive mixtures
method and Markov random field model. Comput. Biol. Med. 38, 379–390.

Landis, J.R., Koch, G.G., 1977. The measurement of observer agreement for categorical
data. Biometrics 33, 159–174.

Li, D.K., Held, U., Petkau, J., Daumer, M., Barkhof, F., Fazekas, F., Frank, J.A., Kappos, L.,
Miller, D.H., Simon, J.H., Wolinsky, J.S., Filippi, M., 2006. MRI T2 lesion burden in
multiple sclerosis: a plateauing relationship with clinical disability. Neurology 66,
1384–1389.

Li, L., Wei, X., Li, X., Rizvi, S., Liang, Z., 2005. Mixture segmentation of multispectral MR
brain images for multiple sclerosis. Journal of Systemics, Cybernetics and Informatics
3, 65–68.

Lüders, E., Gaser, C., Narr, K.L., Toga, A.W., 2009. Why sex matters: brain size indepen-
dent differences in gray matter distributions between men and women. J. Neurosci.
29, 14265–14270.

Neema, M., Guss, Z.D., Stankiewicz, J.M., Arora, A., Healy, B.C., Bakshi, R., 2009. Normal
findings on brain fluid-attenuated inversion recovery MR images at 3 T. AJNR Am.
J. Neuroradiol. 30, 911–916.

Noseworthy, J.H., Lucchinetti, C., Rodriguez, M., Weinshenker, B.G., 2000. Multiple
sclerosis. N. Engl. J. Med. 343, 938–952.

Polman, C.H., Reingold, S.C., Banwell, B., Clanet, M., Cohen, J.A., Filippi, M., Fujihara, K.,
Havrdova, E., Hutchinson, M., Kappos, L., Lublin, F.D., Montalban, X., O'Connor, P.,
Sandberg-Wollheim, M., Thompson, A.J., Waubant, E., Weinshenker, B., Wolinsky,
J.S., 2011. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald
criteria. Ann. Neurol. 69, 292–302.

Rajapakse, J.C., Giedd, J.N., Rapoport, J.L., 1997. Statistical approach to segmentation of
single-channel cerebral MR images. IEEE Trans. Med. Imaging 16, 176–186.

Sahraian, M.A., Radue, E.W., Haller, S., Kappos, L., 2010. Black holes in multiple sclero-
sis: definition, evolution, and clinical correlations. Acta Neurol. Scand. 122, 1–8.

Stevenson, V.L., Gawne-Cain, M.L., Barker, G.J., Thompson, A.J., Miller, D.H., 1997. Imag-
ing of the spinal cord and brain in multiple sclerosis: a comparative study between
fast FLAIR and fast spin echo. J. Neurol. 244, 119–124.

Tohka, J., Zijdenbos, A., Evans, A., 2004. Fast and robust parameter estimation for statis-
tical partial volume models in brain MRI. Neuroimage 23, 84–97.

Uebersax, J.S., 1987. Diversity of decision-making models and the measurement of
interrater agreement. Psychol. Bull. 101, 140–146.

Van Leemput, K., Maes, F., Vandermeulen, D., Colchester, A., Suetens, P., 2001. Automated
segmentation of multiple sclerosis lesions by model outlier detection. IEEE Trans.
Med. Imaging 20, 677–688.

Wattjes, M.P., Barkhof, F., 2009. High field MRI in the diagnosis of multiple sclerosis:
high field-high yield? Neuroradiology 51, 279–292.

Wattjes, M.P., Lutterbey, G.G., Harzheim, M., Gieseke, J., Traber, F., Klotz, L., Klockgether,
T., Schild, H.H., 2006a. Higher sensitivity in the detection of inflammatory brain
lesions in patients with clinically isolated syndromes suggestive of multiple sclero-
sis using high field MRI: an intraindividual comparison of 1.5 T with 3.0 T. Eur.
Radiol. 16, 2067–2073.

Wattjes, M.P., Lutterbey, G.G., Harzheim, M., Gieseke, J., Traber, F., Klotz, L., Klockgether,
T., Schild, H.H., 2006b. Imaging of inflammatory lesions at 3.0 Tesla in patients with
clinically isolated syndromes suggestive of multiple sclerosis: a comparison of
fluid-attenuated inversion recovery with T2 turbo spin-echo. Eur. Radiol. 16,
1494–1500.

Weiner, H.L., 2009. The challenge of multiple sclerosis: how do we cure a chronic
heterogeneous disease? Ann. Neurol. 65, 239–248.

Wels, M., Huber, M., Hornegger, J., 2008. Fully automated segmentation of multiple sclerosis
lesions in multispectral MRI. Pattern Recognition and Image Analysis 18, 347–350.

Winkler, G., 2003. Image Analysis, Random Fields and Markov Chain Monte Carlo
Methods. A Mathematical Introduction. Springer-Verlag, 2nd Edition.

Woo, J.H., Henry, L.P., Krejza, J., Melhem, E.R., 2006. Detection of simulated multiple
sclerosis lesions on T2-weighted and FLAIR images of the brain: observer perfor-
mance. Radiology 241, 206–212.

Woolrich, M.W., Behrens, T.E.J., Beckmann, C.F., Smith, S.M., 2005. Mixture models with
adaptive spatial regularization for segmentation with an application to FMRI data.
IEEE Trans. Med. Imaging 24 (1), 1–11.

Wu, Y., Warfield, S.K., Tan, I.L., Wells, W.M., Meier, D.S., van Schijndel, R.A., Barkhof, F.,
Guttmann, C.R., 2006. Automated segmentation of multiple sclerosis lesion
subtypes with multichannel MRI. Neuroimage 32, 1205–1215.

Zhang, Y., Brady, M., Smith, S., 2001. Segmentation of brain MR images through a hid-
den Markov random field model and the expectation–maximization algorithm.
IEEE Trans. Med. Imaging 20, 45–57.

Zijdenbos, A.P., Dawant, B.M., Margolin, R.A., Palmer, A.C., 1994. Morphometric analysis
of white-matter lesions in MR-images — method and validation. IEEE Trans. Med.
Imaging 13, 716–724.


	An automated tool for detection of FLAIR-hyperintense white-matter lesions in Multiple Sclerosis
	Introduction
	Materials and methods
	Subjects
	Magnetic resonance imaging
	Lesion segmentation algorithm
	Preprocessing with already available software
	Lesion belief maps and initialization
	Lesion growing
	Determination of the initial threshold and of the final threshold

	Evaluation

	Results
	Discussion
	Disclosure statement
	Acknowledgments
	Appendix A1. Pseudo-code description of the lesion growth algorithm
	Appendix A2. Performance parameters
	References


